ترغب بنشر مسار تعليمي؟ اضغط هنا

Fiducial Stellar Population Sequences for the ugriz System

36   0   0.0 ( 0 )
 نشر من قبل James L. Clem
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an extensive observational project that has obtained high-quality and homogeneous photometry for a number of different Galactic star clusters (including M 92, M 13, M 3, M 71, and NGC 6791) spanning a wide range in metallicity (-2.3<[Fe/H]<+0.4), as observed in the ugriz passbands with the MegaCam wide-field imager on the Canada-France-Hawaii Telescope. By employing these purest of stellar populations, fiducial sequences have been defined from color-magnitude diagrams that extend from the tip of the red-giant branch down to approximately 4 magnitudes below the turnoff: these sequences have been accurately calibrated to the standard ugriz system via a set of secondary photometric standards located within these same clusters. Consequently, they can serve as a valuable set of empirical fiducials for the interpretation of stellar populations data in the ugriz system.

قيم البحث

اقرأ أيضاً

We present a new set of cooling models and isochrones for both H- and He-atmosphere white dwarfs, incorporating accurate boundary conditions from detailed model atmosphere calculations, and carbon-oxygen chemical abundance profiles based on updated s tellar evolution calculations from the BaSTI stellar evolution archive - a theoretical data center for the Virtual Observatory. We discuss and quantify the uncertainties in the cooling times predicted by the models, arising from the treatment of mixing during the central H- and He-burning phases, number of thermal pulses experienced by the progenitors, progenitor metallicity and the $^{12}C(alpha,gamma)^{16}O$ reaction rate. The largest sources of uncertainty turn out to be related to the treatment of convection during the last stages of the progenitor central He-burning phase, and the $^{12}C(alpha,gamma)^{16}O$ reaction rate. We compare our new models to previous calculations performed with the same stellar evolution code, and discuss their application to the estimate of the age of the solar neighborhood, and the interpretation of the observed number ratios between H- and He-atmosphere white dwarfs. The new white dwarf sequences and an extensive set of white dwarf isochrones that cover a large range of ages and progenitor metallicities are made publicly available at the official BaSTI website.
Motion blur can impede marker detection and marker-based pose estimation, which is common in real-world robotic applications involving fiducial markers. To solve this problem, we propose a novel lightweight generative adversarial network (GAN), Ghost -DeblurGAN, for real-time motion deblurring. Furthermore, a new large-scale dataset, YorkTag, provides pairs of sharp/blurred images containing fiducial markers and is proposed to train and qualitatively and quantitatively evaluate our model. Experimental results demonstrate that when applied along with fudicual marker systems to motion-blurred images, Ghost-DeblurGAN improves the marker detection significantly and mitigates the rotational ambiguity problem in marker-based pose estimation.
Following Paper I, we provide extended tables of bolometric corrections, extinction coefficients, stellar isochrones, and integrated magnitudes and colours of single-burst stellar populations, for the Sloan Digital Sky Survey (SDSS) ugriz photometric system. They are tested on comparisons with DR1 data for a few stellar systems, namely the Palomar 5 and NGC 2419 globular clusters and the Draco dSph galaxy.
Many robotic tasks rely on the accurate localization of moving objects within a given workspace. This information about the objects poses and velocities are used for control,motion planning, navigation, interaction with the environment or verificatio n. Often motion capture systems are used to obtain such a state estimate. However, these systems are often costly, limited in workspace size and not suitable for outdoor usage. Therefore, we propose a lightweight and easy to use, visual-inertial Simultaneous Localization and Mapping approach that leverages cost-efficient, paper printable artificial landmarks, socalled fiducials. Results show that by fusing visual and inertial data, the system provides accurate estimates and is robust against fast motions and changing lighting conditions. Tight integration of the estimation of sensor and fiducial pose as well as extrinsics ensures accuracy, map consistency and avoids the requirement for precalibration. By providing an open source implementation and various datasets, partially with ground truth information, we enable community members to run, test, modify and extend the system either using these datasets or directly running the system on their own robotic setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا