ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonances in chiral unitary approaches

82   0   0.0 ( 0 )
 نشر من قبل Angels Ramos
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The extension of chiral theories to the description of resonances, via the incorporation of unitarity in coupled channels, has provided us with a new theoretical perspective on the nature of some of the observed excited hadrons. In this contribution some of the early achievements in the field of baryonic resonances are reviewed, the recent evidence of the two-pole nature of the Lambda(1405) is discussed and results on charmed baryon resonances are presented.

قيم البحث

اقرأ أيضاً

In this talk I summarize recent findings made on the description of axial vector mesons as dynamically generated states from the interaction of peseudoscalar mesons and vector mesons, dedicating some attention to the two $K_1(1270)$ states. Then I re view the generation of open and hidden charm scalar and axial states. Finally, I present recent results showing that the low lying $1/2^+$ baryon resonances for S=-1 can be obtained as bound states or resonances of two mesons and one baryon in coupled channels dynamics.
We study the origin of the resonances associated with pole singularities of the scattering amplitude in the chiral unitary approach. We propose a natural renormalization scheme using the low-energy interaction and the general principle of the scatter ing theory. We develop a method to distinguish dynamically generated resonances from genuine quark states [Castillejo-Dalitz-Dyson (CDD) poles] using the natural renormalization scheme and phenomenological fitting. Analyzing physical meson-baryon scatterings, we find that the Lambda(1405) resonance is largely dominated by the meson-baryon molecule component. In contrast, the N(1535) resonance requires a sizable CDD pole contribution, while the effect of the meson-baryon dynamics is also important.
84 - S.X. Nakamura 2013
Recent CLAS data for the pi Sigma invariant mass distributions (line-shapes) in the gamma p -> K^+ pi Sigma reaction are theoretically investigated. The line-shapes have peaks associated with the Lambda(1405) excitation. Our model consists of gauge i nvariant photo-production mechanisms, and the chiral unitary model that gives the rescattering amplitudes where Lambda(1405) is contained. It is found that, while the pi Sigma line-shape data in the Lambda(1405) region are successfully reproduced by our model for all the charge states, the production mechanism is not so simple that we need to introduce parameters associated with short-range dynamics to fit the data. Our detailed analysis suggests that the nonresonant background contribution is not negligible, and its sizable effect shifts the Lambda(1405) peak position by several MeV. We also analyze the data using a Breit-Wigner amplitudes instead of those from the chiral unitary model. We find that the fitted Breit-Wigner parameters are closer to the higher pole position for Lambda(1405) of the chiral unitary model. This work sets a starting point for a fuller analysis in which line-shape as well as K^+ angular distribution data are simultaneously analyzed for extracting Lambda(1405) pole(s).
In this talk I summarize recent findings around the description of axial vector mesons as dynamically generated states from the interaction of pseudoscalar mesons and vector mesons, dedicating some attention to the two $K_1(1270)$ states. Then I revi ew the generation of open and hidden charm scalar and axial states, and how some recent experiment supports the existence of the new hidden charm scalar state predicted. I present recent results showing that the low lying $1/2^+$ baryon resonances for S=-1 can be obtained as bound states or resonances of two mesons and one baryon in coupled channels. Then show the differences with the S=0 case, where the $N^*(1710)$ appears also dynamically generated from the two pion one nucleon system, but the $N^*(1440)$ does not appear, indicating a more complex structure of the Roper resonance. Finally I shall show how the state X(2175), recently discovered at BABAR and BES, appears naturally as a resonance of the $phi K bar{K}$ system.
The internal structure of the resonant Lambda(1405) state is investigated based on meson-baryon coupled-channels chiral dynamics. We evaluate Lambda(1405) form factors which are extracted from current-coupled scattering amplitudes in meson-baryon deg rees of freedom. Using several probe currents and channel decomposition, we find that the resonant Lambda(1405) state is dominantly composed of widely spread Kbar around N, with escaping pi Sigma component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا