ﻻ يوجد ملخص باللغة العربية
We report on the first measurement of the $beta^+$- and orbital electron capture decay rates of $^{140}$Pr nuclei with the most simple electron configurations: bare nuclei, hydrogen-like and helium-like ions. The measured electron capture decay constant of hydrogen-like $^{140}$Pr$^{58+}$ ions is about 50% larger than that of helium-like $^{140}$Pr$^{57+}$ ions. Moreover, $^{140}$Pr ions with one bound electron decay faster than neutral $^{140}$Pr$^{0+}$ atoms with 59 electrons. To explain this peculiar observation one has to take into account the conservation of the total angular momentum, since only particular spin orientations of the nucleus and of the captured electron can contribute to the allowed decay.
We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like $^{140}$Pr$^{59+}$ and $^{142}$Pm$^{60+}$ ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass s
The periodic time modulations, found recently in the two-body orbital electron-capture (EC) decay of both, hydrogen-like $^{140}$Pr$^{58+}$ and $^{142}$Pm$^{60+}$ ions, with periods near to 7s and amplitudes of about 20%, were re-investigated for the
An experiment addressing electron capture (EC) decay of hydrogen-like $^{142}$Pm$^{60+}$ ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times f
Two--photon decay of hydrogen--like ions is studied within the framework of second--order perturbation theory, based on relativistic Diracs equation. Special attention is paid to the effects arising from the summation over the negative--energy (inter
The eigenstate energies of an atom increase under spatial confinement and this effect should also increase the electron density of the orbital electrons at the nucleus thus increasing the decay rate of an electron-capturing radioactive nucleus. We ha