ترغب بنشر مسار تعليمي؟ اضغط هنا

Spots, plages, and flares on lambda Andromedae and II Pegasi

103   0   0.0 ( 0 )
 نشر من قبل Katia Biazzo Dr
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Frasca




اسأل ChatGPT حول البحث

We present the results of a contemporaneous photometric and spectroscopic monitoring of lambda And and II Peg aimed at investigating the behavior of surface inhomogeneities in the atmospheres of these active stars which have nearly the same temperature but different gravity. The light curves and the modulation of the surface temperature, as recovered from LDRs, are used to map the photospheric spots, while the H-alpha emission has been used as an indicator of chromospheric inhomogeneities. The spot temperatures and sizes were derived from a spot model applied to the contemporaneous light and temperature curves. We find larger and cooler spots on II Peg (T_sp ~ 3600 K) compared to lambda And (T_sp ~ 3900 K); this could be the result of both the different gravity and the higher activity level of the former. Moreover, we find a clear anti-correlation between the H-alpha emission and the photospheric diagnostics. We have also detected a modulation of the intensity of the HeI D_3 line with the star rotation. A rough reconstruction of the 3D structure of their atmospheres has been also performed by applying a spot/plage model to the light and temperature curves and to the H-alpha flux modulation. A close spatial association of photospheric and chromospheric active regions has been found in both stars. Larger and cooler spots have been found on II Peg, the system with the active component of higher gravity and higher activity level. The area ratio of plages to spots seems to decrease when the spots get bigger. Moreover, with the present and literature data, a correlation between the temperature difference Delta_T = T_ph - T_sp and the surface gravity has been also suggested. In addition, a strong flare affecting the H-alpha, the HeI D_3, and the cores of NaI D_1,2 lines has been observed on II Peg.



قيم البحث

اقرأ أيضاً

71 - L. A. Balona 2020
About 22000 Kepler stars and nearly 60000 TESS stars from sectors 1-24 have been classified according to variability type. A large proportion of stars of all spectral types appear to have periods consistent with the expected rotation periods. A previ ous analysis of A and late B stars strongly suggests that these stars are indeed rotational variables. In this paper we have accumulated sufficient data to show that rotational modulation is present even among the early B stars. A search for flares in TESS A and B stars resulted in the detection of 110 flares in 68 stars. The flare energies exceed those of typical K and M dwarfs by at least two orders of magnitude. These results, together with severe difficulties of current models to explain stellar pulsations in A and B stars, suggest a need for revision of our current understanding of the outer layers of stars with radiative envelopes.
We present temperature maps of RS CVn star lambda Andromedae, reconstructed from interferometric data acquired in 2010 and 2011 by the MIRC instrument at the Center for High Angular Resolution Astronomy Array. To constrain the stellar parameters requ ired for this imaging task, we first modeled the star using our GPU-accelerated code SIMTOI. The stellar surface was then imaged using our open source interferometric imaging code ROTIR, in the process further refining the estimation of stellar parameters. We report that the measured angular diameter is 2.742 +/- 0.010 mas with a limb-darkening coefficient of 0.231 +/- 0.024. While our images are consistent with those of prior works, we provide updated physical parameters for lambda Andromedae (R_star = 7.78 +/- 0.05 R_odot, M_star = 1.24 +/- 0.72 M_odot, log L/L_odot = 1.46 +/- 0.04).
Stellar activity is a potential important limitation to the detection of low mass extrasolar planets with indirect methods (RV, photometry, astrometry). In previous papers, using the Sun as a proxy, we investigated the impact of stellar activity (spo ts, plages, convection) on the detectability of an Earth-mass planet in the habitable zone (HZ) of solar-type stars with RV techniques. We extend here the detectability study to the case of astrometry. We used the sunspot and plages properties recorded over one solar cycle to infer the astrometric variations that a Sun-like star seen edge-on, 10 pc away, would exhibit, if covered by such spots/bright structures. We compare the signal to the one expected from the astrometric wobble (0.3 {mu}as) of such a star surrounded by a one Earth-mass planet in the HZ. We also briefly investigate higher levels of activity. The activity-induced astrometric signal along the equatorial plane has an amplitude of typ. less than 0.2 {mu}as (rms=0.07 {mu}as), smaller than the one expected from an Earth-mass planet at 1 AU. Hence, for this level of activity, the detectability is governed by the instrumental precision rather than the activity. We show that for instance a one Earth-mass planet at 1 AU would be detected with a monthly visit during less than 5 years and an instrumental precision of 0.8 {mu}as. A level of activity 5 times higher would still allow such a detection with a precision of 0.35 {mu}as. We conclude that astrometry is an attractive approach to search for such planets around solar type stars with most levels of stellar activity.
We present results from the Weather on Other Worlds Spitzer Exploration Science program to investigate photometric variability in L and T dwarfs, usually attributed to patchy clouds. We surveyed 44 L3-T8 dwarfs, spanning a range of $J-K_s$ colors and surface gravities. We find that 14/23 (61%; 95% confidence interval: 41%-78%) of our single L3-L9.5 dwarfs are variable with peak-to-peak amplitudes between 0.2% and 1.5%, and 5/16 (31%; 95% confidence interval: 14%-56%) of our single T0-T8 dwarfs are variable with amplitudes between 0.8% and 4.6%. After correcting for sensitivity, we find that 80% (95% confidence interval: 53%-100%) of L dwarfs vary by >0.2%, and 36% (95% confidence interval: 19%-52%) of T dwarfs vary by >0.4%. Given viewing geometry considerations, we conclude that photospheric heterogeneities causing >0.2% 3-5-micron flux variations are present on virtually all L dwarfs, and probably on most T dwarfs. A third of L dwarf variables show irregular light curves, indicating that L dwarfs may have multiple spots that evolve over a single rotation. Also, approximately a third of the periodicities are on time scales >10 h, suggesting that slowly-rotating brown dwarfs may be common. We observe an increase in the maximum amplitudes over the entire spectral type range, revealing a potential for greater temperature contrasts in T dwarfs than in L dwarfs. We find a tentative association (92% confidence) between low surface gravity and high-amplitude variability among L3-L5.5 dwarfs. Although we can not confirm whether lower gravity is also correlated with a higher incidence of variables, the result is promising for the characterization of directly imaged young extrasolar planets through variability.
AU Pegasi is a pulsating star in a spectroscopic binary system with an orbital period of 53.26 days. Between 1960 and 1990 an extremely rapid period increase was observed in the value of the pulsation period, but in the last 15 years the observation show that the period set in 2.411 days. Fourier analysis of photometric data obtained during the ASAS project and those taken at the Piszkesteto Mountain Station of the Konkoly Observatory during 1994-2005 indicate that AU Pegasi is pulsating in two modes simultaneously, and the ratio of the frequencies of the two modes is 0.706, a value common for double-mode classical Cepheids. A careful analysis of other photometric observations obtained during the era of the strong period increase also revealed existence of a second mode. This may suggest that this star is not a Type II Cepheid, despite its galactic position.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا