ﻻ يوجد ملخص باللغة العربية
State estimation is necessary in diagnosing anomalies in Water Demand Systems (WDS). In this paper we present a neural network performing such a task. State estimation is performed by using optimization, which tries to reconcile all the available information. Quantification of the uncertainty of the input data (telemetry measures and demand predictions) can be achieved by means of robust estate estimation. Using a mathematical model of the network, fuzzy estimated states for anomalous states of the network can be obtained. They are used to train a neural network capable of assessing WDS anomalies associated with particular sets of measurements.
Estimation-of-distribution algorithms (EDAs) are general metaheuristics used in optimization that represent a more recent alternative to classical approaches like evolutionary algorithms. In a nutshell, EDAs typically do not directly evolve populatio
Estimation-of-distribution algorithms (EDAs) are randomized search heuristics that create a probabilistic model of the solution space, which is updated iteratively, based on the quality of the solutions sampled according to the model. As previous wor
The aim of this work is studying the use of copulas and vines in the optimization with Estimation of Distribution Algorithms (EDAs). Two EDAs are built around the multivariate product and normal copulas, and other two are based on pair-copula decompo
Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (eda) for the nurse scheduling problem, which involves choosing a suitable
Application of the multi-objective particle swarm optimisation (MOPSO) algorithm to design of water distribution systems is described. An earlier MOPSO algorithm is augmented with (a) local search, (b) a modified strategy for assigning the leader, an