ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasars and the Hubble Relation

55   0   0.0 ( 0 )
 نشر من قبل Halton Arp
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Arp




اسأل ChatGPT حول البحث

If active galaxies are defined as extragalactic objects with appreciably non thermal spectra then a continuity exists in redshift from the highest redshift quasars to low redshift Seyferts, AGNs and allied galaxies. Evidence is discussed for this sequence to be an evolutionary track with objects evolving from high to low intrinsic redshift with time. At the end of this evolution the objects are nearly the same age as our own galaxy and they come to rest on the traditional Hubble relation.

قيم البحث

اقرأ أيضاً

Active galactic nuclei (AGNs) are characterized by a clear correlation between luminosity and metallicity (L_AGN-Z_AGN relation). The origin of this correlation is not clear. It may result from a relation between the black hole mass (M_BH) and metall icity, or from a relation between the accretion rate (L/L_Edd) and metallicity. To investigate the origin of the L_AGN-Z_AGN relation, we use optical spectra of 2383 quasars at 2.3 < z < 3.0 from the Sloan Digital Sky Survey. By using this data set, we have constructed composite spectra of 33 subsamples in intervals of both M_BH and L/L_Edd. From these composite spectra we measure emission-line flux ratios that are sensitive to the metallicity of the broad line region (BLR); specifically, NV/CIV, NV/HeII, (SiIV+OIV])/CIV, and AlIII/CIV. We find that there is a significant correlation between M_BH and Z_BLR as inferred from all four metallicity-sensitive emission-line flux ratios. This result strongly suggests that the observed L_AGN-Z_AGN relation is mostly a consequence of the M_BH-Z_AGN relation. The relation between M_BH and Z_BLR is likely a consequence of both the M_BH-M_bul relation and of the mass-metallicity relation in the host galaxy. We also find that L/L_Edd correlates with the emission line flux ratios involving NV (more specifically, NV/CIV and NV/HeII), while it does not correlate with the other two metallicity sensitive emission line flux ratios, i.e., (SiIV+OIV])/CIV and AlIII/CIV. These correlations indicate that the emission-line flux ratios involving NV depend on both metallicity and relative abundance of nitrogen. We suggest that the relation between L/L_Edd and those line ratios involving nitrogen, is caused by a delay of the black hole accretion rate relative to the onset of nuclear star formation of about 10^8 years, which is the timescale required for the nitrogen enrichment.
We present images of 29 post-starburst quasars (PSQs) from a Hubble Space Telescope (emph{HST}) Advanced Camera for Surveys (ACS) Wide Field Channel Snapshot program. These broad-lined active galactic nuclei (AGN) possess the spectral signatures of m assive ($M_{burst} sim 10^{10} M_{odot}$), moderate-aged stellar populations (hundreds of Myrs). Thus, their composite nature provides insight into the AGN-starburst connection. We measure quasar-to-host galaxy light contributions via semi-automated two-dimensional light profile fits of PSF-subtracted images. We examine the host morphologies, as well as, model the separate bulge and disk components. The emph{HST}/ACS-F606W images reveal an equal number of spiral (13/29) and early-type (13/29) hosts, with the remaining three hosts having indeterminate classifications. AGNs hosted by early-type galaxies have on average greater luminosity than those hosted by spiral galaxies. Disturbances, such as tidal tails, shells, star-forming knots, and asymmetries are seen as signposts of interaction/merger activity. Disturbances such as these were found in 17 of the 29 objects and are evenly distributed among early-type and spiral galaxies. Two of these systems are clearly merging with their companions. Compared to other AGN of similar luminosity and redshift these PSQs have a higher fraction of early-type hosts and disturbances. Our most luminous objects with disturbed early-type host galaxies appear to be consistent with merger products. Thus, these luminous disturbed galaxies may represent a phase in an evolutionary scenario for merger driven activity and of hierarchical galaxy evolution. Our less luminous objects appear to be consistent with Seyfert galaxies not requiring triggering by major mergers. Many of these Seyferts are barred spiral galaxies.
87 - J.K. Kotilainen 2007
We present near-infrared imaging with ESO VLT+ISAAC of the host galaxies of low luminosity quasars in the redshift range 1 < z < 2, aimed at investigating the relationship between the nuclear and host galaxy luminosities at high redshift. This work c omplements our previous study to trace the cosmological evolution of the host galaxies of high luminosity quasars (Falomo et al. 2004). The new sample includes 15 low luminosity quasars, nine radio-loud (RLQ) and six radio-quiet (RQQ). They have similar distribution of redshift and optical luminosity, and together with the high luminosity quasars they cover a large range (~4 mag) of the quasar luminosity function. The host galaxies of both types of quasars are in the range of massive inactive ellipticals between L* and 10 L*. RLQ hosts are systematically more luminous than RQQ hosts by a factor of ~2. This difference is similar to that found for the high luminosity quasars. This luminosity gap appears to be independent of the rest-frame U-band luminosity but clearly correlated with the rest-frame R-band luminosity. The color difference between the RQQs and the RLQs is likely a combination of an intrinsic difference in the strength of the thermal and nonthermal components in the SEDs of RLQs and RQQs, and a selection effect due to internal dust extinction. For the combined set of quasars, we find a reasonable correlation between the nuclear and the host luminosities. This correlation is less apparent for RQQs than for RLQs. If the R-band luminosity is representative of the bolometric luminosity, and assuming that the host luminosity is proportional to the black hole mass, as observed in nearby massive spheroids, quasars emit with a relatively narrow range of power with respect to their Eddington luminosity and with the same distribution for RLQs and RQQs.
We present a study of the relation between X-rays and ultraviolet emission in quasars for a sample of broad-line, radio-quiet objects obtained from the cross-match of the Sloan Digital Sky Survey DR14 with the latest Chandra Source Catalog 2.0 (2,332 quasars) and the Chandra COSMOS Legacy survey (273 quasars). The non-linear relation between the ultraviolet (at 2500 A, $L_{O}$) and the X-ray (at 2 keV, $L_{X}$) emission in quasars has been proved to be characterised by a smaller intrinsic dispersion than the observed one, as long as a homogeneous selection, aimed at preventing the inclusion of contaminants in the sample, is fulfilled. By leveraging on the low background of Chandra, we performed a complete spectral analysis of all the data available for the SDSS-CSC2.0 quasar sample (i.e. 3,430 X-ray observations), with the main goal of reducing the uncertainties on the source properties (e.g. flux, spectral slope). We analysed whether any evolution of the $L_{X}-L_{O}$ relation exists by dividing the sample in narrow redshift intervals across the redshift range spanned by our sample, $z simeq 0.5-4$. We find that the slope of the relation does not evolve with redshift and it is consistent with the literature value of $0.6$ over the explored redshift range, implying that the mechanism underlying the coupling of the accretion disc and hot corona is the same at the different cosmic epochs. We also find that the dispersion decreases when examining the highest redshifts, where only pointed observations are available. These results further confirm that quasars are `standardisable candles, that is we can reliably measure cosmological distances at high redshifts where very few cosmological probes are available.
In this paper, we present a model-independent approach to calibrate the largest quasar sample. Calibrating quasar samples is essentially constraining the parameters of the linear relation between the $log$ of the ultraviolet (UV) and X-ray luminositi es. This calibration allows quasars to be used as standardized candles. There is a strong correlation between the parameters characterizing the quasar luminosity relation and the cosmological distances inferred from using quasars as standardized candles. We break this degeneracy by using Gaussian process regression to model-independently reconstruct the expansion history of the Universe from the latest type Ia supernova observations. Using the calibrated quasar dataset, we further reconstruct the expansion history up to redshift of $zsim 7.5$. Finally, we test the consistency between the calibrated quasar sample and the standard $rm{Lambda}CDM$ model based on the posterior probability distribution of the GP hyperparameters. Our results show that the quasar sample is in good agreement with the standard $rm{Lambda}CDM$ model in the redshift range of the supernova, despite of mildly significant deviations taking place at higher redshifts. Fitting the standard $rm{Lambda}CDM$ model to the calibrated quasar sample, we obtain a high value of the matter density parameter $Omega_m = 0.382^{+0.045}_{-0.042}$, which is marginally consistent with the constraints from other cosmological observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا