ﻻ يوجد ملخص باللغة العربية
Spectroscopy of Lambda hypernuclei has recently become one of the most valuable tools for the experimental investigation of strangeness nuclear physics. Several new approached are being pursued currently: In Mainz, the Microtron MAMI has been upgraded to 1.5 GeV electron beam energy and will be used to produce strange hadronic systems in the near future. The KaoS spectrometer is being installed for large acceptance, high resolution strangeness reaction spectroscopy at the existing spectrometer facility. The Mainz hypernuclei research programme will be complemented by experiments on multi-strange systems at the planned FAIR facility at GSI. The gamma-ray spectroscopy of double Lambda hypernuclei produced via Xi-bar Xi pair production is one of the four main topics which will be addressed by the PANDA Collaboration. In this paper the status of the planned experiments and the future prospects are presented.
In February 2007, the fourth stage of the Mainz Microtron, MAMI-C, started operations with a first experiment. The new Harmonic Double-Sided Microtron delivers an electron beam with energies up to 1.5 GeV while preserving the excellent beam quality o
Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Anti-proton and Ion Research FAIR at Darmstadt, Germany. A copious production of Xi-hyperons at a dedicated internal target in the stor
A characterisation of scintillating fibres with silicon photomultiplier read-out was performed in view of their possible application in fibre tracking detector systems. Such a concept is being considered for the Kaos spectrometer at the Mainz Microtr
At the Institut fur Kernphysik in Mainz, Germany, the microtron MAMI has been upgraded to 1.5-GeV electron beam energy. The magnetic spectrometer Kaos is now operated by the A1 collaboration to study strangeness electro-production. Its compact design
Measurements of the electric and the magnetic neutron form factors have been performed at the Mainz Microtron for more than 20 years. These MAMI experiments are reviewed in the context of measurements from other groups, and future measurements at MAMI are outlined.