ﻻ يوجد ملخص باللغة العربية
Iterated dynamical maps offer an ideal setting to investigate quantum dynamical bifurcations and are well adapted to few-qubit quantum computer realisations. We show that a single trapped ion, subject to periodic impulsive forces, exhibits a rich structure of dynamical bifurcations derived from the Jahn-Teller Hamiltonian flow model. We show that the entanglement between the oscillator and electronic degrees of freedom reflects the underlying dynamical bifurcation in a Floquet eigenstate.
We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate $kappa$, exhibits a thermal spectrum with an Unruh temperature given by T=hbar*kappa. We discuss the similarities of th
We show how entangled qubits can be encoded as entangled coherent states of two-dimensional centre-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposa
Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-fi
The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic tra
We engineer the fast rotation of a quantum particle confined in an effectively one-dimensional, harmonic trap, for a predetermined rotation angle and time, avoiding final excitation. Different schemes are proposed with different speed limits that dep