ترغب بنشر مسار تعليمي؟ اضغط هنا

Iterated dynamical maps in an ion trap

106   0   0.0 ( 0 )
 نشر من قبل Gerard Milburn
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Iterated dynamical maps offer an ideal setting to investigate quantum dynamical bifurcations and are well adapted to few-qubit quantum computer realisations. We show that a single trapped ion, subject to periodic impulsive forces, exhibits a rich structure of dynamical bifurcations derived from the Jahn-Teller Hamiltonian flow model. We show that the entanglement between the oscillator and electronic degrees of freedom reflects the underlying dynamical bifurcation in a Floquet eigenstate.



قيم البحث

اقرأ أيضاً

We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate $kappa$, exhibits a thermal spectrum with an Unruh temperature given by T=hbar*kappa. We discuss the similarities of th is experiment to the usual Unruh effect for quantum fields and uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to anti-normally ordered moments using the ions first blue sideband transition.
We show how entangled qubits can be encoded as entangled coherent states of two-dimensional centre-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposa l for entanglement transfer from the two vibrational modes to the electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving methods.
Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-fi eld noise emanating from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates on the electrodes play by identifying contaminant overlayers, developing an in situ argon-ion beam cleaning procedure, and measuring ion heating rates before and after cleaning the trap electrodes surfaces. We find a reduction of two orders of magnitude in heating rate after cleaning.
The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic tra ps to the micrometer scale promises even higher levels of control and reliability. Compared with chip traps for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass spectrometer arrays, compact atomic clocks, and most notably, large scale quantum information processors. Here we report the operation of a micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool, and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium arsenide (GaAs) heterostructure.
We engineer the fast rotation of a quantum particle confined in an effectively one-dimensional, harmonic trap, for a predetermined rotation angle and time, avoiding final excitation. Different schemes are proposed with different speed limits that dep end on the control capabilities. We also make use of trap rotations to create squeezed states without manipulating the trap frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا