ﻻ يوجد ملخص باللغة العربية
This paper studies the defect of terminal Gorenstein Fano 3 folds. I determine a bound on the defect of terminal Gorenstein Fano 3-folds of Picard rank 1 that do not contain a plane. I give a general bound for quartic 3-folds and indicate how to study the defect of terminal Gorenstein Fano 3-folds with Picard rank 1 that contain a plane.
We compute the Hochschild-Kostant-Rosenberg decomposition of the Hochschild cohomology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber algebra structure, and yields some initial insights in the classification of
We prove a Bogomolov-Gieseker type inequality for the third Chern characters of stable sheaves on Calabi-Yau 3-folds and a large class of Fano 3-folds with given rank and first and second Chern classes. The proof uses the spreading-out technique, van
We construct some new deformation families of four-dimensional Fano manifolds of index $1$ in some known classes of Gorenstein formats. These families have explicit descriptions in terms of equations, defining their image under the anti-canonical emb
In this thesis, I determine a bound on the defect of terminal Gorenstein quartic 3-folds. More generally, I study the defect of terminal Gorenstein Fano 3-folds of Picard rank 1 and genus at least 3. I state a geometric motivation of non Q-factoriality in the case of quartics.
Let $Xsubset mathbb{P}^4$ be a terminal factorial quartic $3$-fold. If $X$ is non-singular, $X$ is emph{birationally rigid}, i.e. the classical MMP on any terminal $mathbb{Q}$-factorial projective variety $Z$ birational to $X$ always terminates with