ترغب بنشر مسار تعليمي؟ اضغط هنا

An observation of a mutual event between two satellites of Uranus

28   0   0.0 ( 0 )
 نشر من قبل M\\'arton Hidas
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. G. Hidas




اسأل ChatGPT حول البحث

We present observations of the occultation of Umbriel by Oberon on 4 May, 2007. We believe this is the first observed mutual event between satellites of Uranus. Fitting a simple geometric model to the lightcurve, we measure the mid-event time with a precision of 4 seconds. We assume previously measured values for the albedos of the two satellites (Karkoschka 2001), and measure the impact parameter to be 500 +/- 80 km. These measurements are more precise than estimates based on current ephemerides for these satellites. Therefore observations of additional mutual events during the 2007-2008 Uranian equinox will provide improved estimates of their orbital and physical parameters.

قيم البحث

اقرأ أيضاً

We present astrometric observations of the Saturnian satellites Mimas, Enceladus, Tethys, Dione and Rhea from Cassini Imaging Science Subsystem (ISS) narrow-angle camera (NAC) images. Image sequences were designed to observe mutual occultations betwe en these satellites. The positions of satellite centres were estimated by fitting ellipsoidal shape models to the measured limbs of the imaged satellites. Spacecraft pointing corrections were computed using the UCAC2 star catalogue. We provide a total of 2303 astrometric observations, resulting in 976 pairs, the remainder consisting of observations of a single satellite. Mean residuals for the individual satellite positions relative to the SAT360 ephemeris were 4.3 km in the line direction and -2.4 km in the sample direction, with standard deviations of 5.6 and 7.0 km respectively, an order of magnitude improvement in precision compared to published HST observations. By considering inter-satellite separations, uncertainties in camera pointing and spacecraft positioning along with possible biases in the individual positions of the satellites can be largely eliminated, resulting in an order-of-magnitude increase in accuracy compared to that achievable using the individual satellite positions. We show how factors relating to the viewing geometry cause small biases in the individual positions of order 0.28 pixel to become systematic across the dataset as a whole and discuss options for reducing their effects . The reduced astrometric data are provided in the form of individual positions for each satellite, together with the measured positions of reference stars, in order to allow more flexibility in the processing of the observations, taking into account possible future advances in limb-fitting techniques as well as the future availability of more accurate star catalogues, such as those from the GAIA mission.
Typically we can deliver astrometric positions of natural satellites with errors in the 50-150 mas range. Apparent distances from mutual phenomena, have much smaller errors, less than 10 mas. However, this method can only be applied during the equino x of the planets. We developed a method that can provide accurate astrometric data for natural satellites -- the mutual approximations. The method can be applied when any two satellites pass close by each other in the apparent sky plane. The fundamental parameter is the central instant $t_0$ of the passage when the distances reach a minimum. We applied the method for the Galilean moons. All observations were made with a 0.6 m telescope with a narrow-band filter centred at 889 nm with width of 15 nm which attenuated Jupiters scattered light. We obtained central instants for 14 mutual approximations observed in 2014-2015. We determined $t_0$ with an average precision of 3.42 mas (10.43 km). For comparison, we also applied the method for 5 occultations in the 2009 mutual phenomena campaign and for 22 occultations in the 2014-2015 campaign. The comparisons of $t_0$ determined by our method with the results from mutual phenomena show an agreement by less than 1-sigma error in $t_0$, typically less than 10 mas. This new method is particularly suitable for observations by small telescopes.
The large and tidally-locked classical moons of Uranus display longitudinal and planetocentric trends in their surface compositions. Spectrally red material has been detected primarily on the leading hemispheres of the outer moons, Titania and Oberon . Furthermore, detected H2O ice bands are stronger on the leading hemispheres of the classical satellites, and the leading/trailing asymmetry in H2O ice band strengths decreases with distance from Uranus. We hypothesize that the observed distribution of red material and trends in H2O ice band strengths results from infalling dust from Uranian irregular satellites. These dust particles migrate inward on slowly decaying orbits, eventually reaching the classical satellite zone, where they collide primarily with the outer moons. The latitudinal distribution of dust swept up by these moons should be fairly even across their southern and northern hemispheres. However, red material has only been detected over the southern hemispheres of these moons (subsolar latitude 81 S). Consequently, to test whether irregular satellite dust impacts drive the observed enhancement in reddening, we have gathered new ground-based data of the now observable northern hemispheres of these moons (sub-observer latitudes, 17 to 35 N). Our results and analyses indicate that longitudinal and planetocentric trends in reddening and H2O ice band strengths are broadly consistent across both southern and northern latitudes of these moons, thereby supporting our hypothesis. Utilizing a suite of numerical best fit models, we investigate the composition of the reddening agent detected on these moons, finding that both complex organics and amorphous pyroxene match the spectral slopes of our data. We also present spectra that span 2.9 to 4.1 microns, a previously unexplored wavelength range in terms of spectroscopy for the Uranian moons.
We demonstrate experimentally that a single Rb atom excited to the $79d_{5/2}$ level blocks the subsequent excitation of a second atom located more than $10 murm m$ away. The observed probability of double excitation of $sim 30%$ is consistent with a theoretical model based on calculations of the long range dipole-dipole interaction between atoms.
A behavior of a two qubit system coupled by the electric capacitance has been studied quantum mechanically. We found that the interaction is essentially the same as the one for the dipole-dipole interaction; i.e., qubit-qubit coupling of the NMR quan tum gate. Therefore a quantum gate could be constructed by the same operation sequence for the NMR device if the coupling is small enough. The result gives an information to the effort of development of the devices assuming capacitive coupling between qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا