ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of inhomogeneous activity of players and noise on cooperation in spatial public goods games

215   0   0.0 ( 0 )
 نشر من قبل Wu Zhi-Xi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the public goods game in the noisy case by considering the players with inhomogeneous activity teaching on a square lattice. It is shown that the introduction of the inhomogeneous activity of teaching of the players can remarkably promote cooperation. By investigating the effects of noise on cooperative behavior in detail, we find that the variation of cooperator density $rho_C$ with the noise parameter $kappa$ displays several different behaviors: $rho_C$ monotonically increases (decreases) with $kappa$; $rho_C$ firstly increases (decreases) with $kappa$ and then it decreases (increases) monotonically after reaching its maximum (minimum) value, which depends on the amount of the multiplication factor $r$, on whether the system is homogeneous or inhomogeneous, and on whether the adopted updating is synchronous or asynchronous. These results imply that the noise plays an important and nontrivial role in the evolution of cooperation.



قيم البحث

اقرأ أيضاً

In this Brief Report we study the evolutionary dynamics of the Public Goods Game in a population of mobile agents embedded in a 2-dimensional space. In this framework, the backbone of interactions between agents changes in time, allowing us to study the impact that mobility has on the emergence of cooperation in structured populations. We compare our results with a static case in which agents interact on top of a Random Geometric Graph. Our results point out that a low degree of mobility enhances the onset of cooperation in the system while a moderate velocity favors the fixation of the full-cooperative state.
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such game s, contributions to the public good are made only by cooperators, while all players, including defectors, can reap public goods benefits. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a network without spatial constraints in which players adapt to their environment in order to increase individual payoffs. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.
In this Letter, we introduce an aspiration-induced reconnection mechanism into the spatial public goods game. A player will reconnect to a randomly chosen player if its payoff acquired from the group centered on the neighbor does not exceed the aspir ation level. We find that an intermediate aspiration level can best promote cooperation. This optimal phenomenon can be explained by a negative feedback effect, namely, a moderate level of reconnection induced by the intermediate aspiration level induces can change the downfall of cooperators, and then facilitate the fast spreading of cooperation. While insufficient reconnection and excessive reconnection induced by low and high aspiration levels respectively are not conductive to such an effect. Moreover, we find that the intermediate aspiration level can lead to the heterogeneous distribution of degree, which will be beneficial to the evolution of cooperation.
We study an evolutionary spatial prisoners dilemma game where the fitness of the players is determined by both the payoffs from the current interaction and their history. We consider the situation where the selection timescale is slower than the inte raction timescale. This is done by implementing probabilistic reproduction on an individual level. We observe that both too fast and too slow reproduction rates hamper the emergence of cooperation. In other words, there exists an intermediate selection timescale that maximizes cooperation. Another factor we find to promote cooperation is a diversity of reproduction timescales.
We propose an extended spatial evolutionary public goods game (SEPGG) model to study the dynamics of individual career choice and the corresponding social output. Based on the social value orientation theory, we categorized two classes of work, namel y the public work if it serves public interests, and the private work if it serves personal interests. Under the context of SEPGG, choosing public work is to cooperate and choosing private work is to defect. We then investigate the effects of employee productivity, human capital and external subsidies on individual career choices of the two work types, as well as the overall social welfare. From simulation results, we found that when employee productivity of public work is low, people are more willing to enter the private sector. Although this will make both the effort level and human capital of individuals doing private work higher than those engaging in public work, the total outcome of the private sector is still lower than that of the public sector provided a low level of public subsidies. When the employee productivity is higher for public work, a certain amount of subsidy can greatly improve system output. On the contrary, when the employee productivity of public work is low, provisions of subsidy to the public sector can result in a decline in social output.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا