ترغب بنشر مسار تعليمي؟ اضغط هنا

New Universal Local Feature in the Inflationary Perturbation Spectrum

353   0   0.0 ( 0 )
 نشر من قبل Minu Joy
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A model is developed in which the inflaton potential experiences a sudden small change in its second derivative (the effective mass of the inflaton). An exact treatment demonstrates that the resulting density perturbation has a quasi-flat power spectrum with a break in its slope (a step in n_s). The step in the spectral index is modulated by characteristic oscillations and results in large running of the spectral index localised over a few e-folds of scales. A field-theoretic model giving rise to such behaviour of the inflationary potential is based on a fast phase transition experienced by a second scalar field weakly coupled to the inflaton. Such a transition is similar to that which terminates inflation in the hybrid inflationary scenario. This scenario suggests that the observed running of the spectral index in the WMAP data may be caused by a fast second order phase transition which occurred during inflation.

قيم البحث

اقرأ أيضاً

We discuss the possibility of explaining the recent NANOGrav results by inflationary gravitational waves (IGWs) with a blue-tilted primordial spectrum. Although such IGWs can account for the NANOGrav signal without contradicting the upper bound on th e tensor-to-scalar ratio at the cosmic microwave background scale, the predicted spectrum is in strong tension with the upper bound on the amplitude of the stochastic gravitational wave background by big-bang nucleosynthesis (BBN) and the second LIGO-Virgo observation run. However, the thermal history of the Universe, such as reheating and late-time entropy production, affects the spectral shape of IGWs at high frequencies and permits evading the upper bounds. We show that, for the standard reheating scenario, when the reheating temperature is relatively low, a blue tensor spectrum can explain the recent NANOGrav signal without contradicting the BBN and the LIGO-Virgo constraints. We further find that, when one considers a late-time entropy production, the NANOGrav signal can be explained even for an instant reheating scenario.
We derive a simple model-independent upper bound on the strength of magnetic fields obtained in inflationary and post-inflationary magnetogenesis taking into account the constraints imposed by the condition of weak coupling, back-reaction and Schwing er effect. This bound turns out to be rather low for cosmologically interesting spatial scales. Somewhat higher upper bound is obtained if one assumes that some unknown mechanism suppresses the Schwinger effect in the early universe. Incidentally, we correct our previous estimates for this case.
A new approach is given for the implementation of boundary conditions used in solving the Mukhanov-Sasaki equation in the context of inflation. The familiar quantization procedure is reviewed, along with a discussion of where one might expect deviati ons from the standard approach to arise. The proposed method introduces a (model dependent) fitting function for the z/z and a/a terms in the Mukhanov-Sasaki equation for scalar and tensor modes, as well as imposes the boundary conditions at a finite conformal time. As an example, we employ a fitting function, and compute the spectral index, along with its running, for a specific inflationary model which possesses background equations that are analytically solvable. The observational upper bound on the tensor to scalar ratio is used to constrain the parameters of the boundary conditions in the tensor sector as well. An overview on the generalization of this method is also discussed.
We point out that the theoretical predictions for the inflationary observables may be generically altered by the presence of fields which are heavier than the Hubble rate during inflation and whose dynamics is usually neglected. They introduce correc tions which may be easily larger than both the second-order contributions in the slow-roll parameters and the accuracy expected in the forthcoming experiments.
We describe a simple scenario of inflationary magnetogenesis based on a helical coupling to electromagnetism. It allows to generate helical magnetic fields of strength of order up to $10^{- 7},text{G}$, when extrapolated to the current epoch, in a na rrow spectral band centered at any physical wavenumber by adjusting the model parameters. Additional constraints on magnetic fields arise from the considerations of baryogenesis and, possibly, from the Schwinger effect of creation of charged particle-antiparticle pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا