ترغب بنشر مسار تعليمي؟ اضغط هنا

General (anti-)commutators of gamma matrices

205   0   0.0 ( 0 )
 نشر من قبل Wolfgang Mueck
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Wolfgang Mueck




اسأل ChatGPT حول البحث

Commutators and anticommutators of gamma matrices with arbitrary numbers of (antisymmetrized) indices are derived.



قيم البحث

اقرأ أيضاً

Pauli spin matrices, Pauli group, commutators, anti-commutators and the Kronecker product are studied. Applications to eigenvalue problems, exponential functions of such matrices, spin Hamilton operators, mutually unbiased bases, Fermi operators and Bose operators are provided.
We discuss some general aspects of commutators of local operators in Lorentzian CFTs, which can be obtained from a suitable analytic continuation of the Euclidean operator product expansion (OPE). Commutators only make sense as distributions, and car e has to be taken to extract the right distribution from the OPE. We provide explicit computations in two and four-dimensional CFTs, focusing mainly on commutators of components of the stress-tensor. We rederive several familiar results, such as the canonical commutation relations of free field theory, the local form of the Poincare algebra, and the Virasoro algebra of two-dimensional CFT. We then consider commutators of light-ray operators built from the stress-tensor. Using simplifying features of the light sheet limit in four-dimensional CFT we provide a direct computation of the BMS algebra formed by a specific set of light-ray operators in theories with no light scalar conformal primaries. In four-dimensional CFT we define a new infinite set of light-ray operators constructed from the stress-tensor, which all have well-defined matrix elements. These are a direct generalization of the two-dimensional Virasoro light-ray operators that are obtained from a conformal embedding of Minkowski space in the Lorentzian cylinder. They obey Hermiticity conditions similar to their two-dimensional analogues, and also share the property that a semi-infinite subset annihilates the vacuum.
The monopole-like singularity of Berrys adiabatic phase in momentum space and associated anomalous Poisson brackets have been recently discussed in various fields. With the help of the results of an exactly solvable version of Berrys model, we show t hat Berrys phase does not lead to the deformation of the principle of quantum mechanics in the sense of anomalous canonical commutators. If one should assume Berrys phase of genuine Dirac monopole-type, which is assumed to hold not only in the adiabatic limit but also in the non-adiabatic limit, the deformation of the principle of quantum mechanics could take place. But Berrys phase of the genuine Dirac monopole-type is not supported by the exactly solvable version of Berrys model nor by a generic model of Berrys phase. Besides, the monopole-like Berrys phase in momentum space has a magnetic charge $e_{M}=2pihbar$, for which the possible anomalous term in the canonical commutator $[x_{k},x_{l}]=ihbarOmega_{kl}$ would become of the order $O(hbar^{2})$.
195 - Jia-wen Deng , Uwe Guenther , 2012
Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices ha ve more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P-pseudo-Hermitian with respect to some P operators. The relation between corresponding P and P operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.
62 - Michiel de Bondt 2017
We show that Boolean matrix multiplication, computed as a sum of products of column vectors with row vectors, is essentially the same as Warshalls algorithm for computing the transitive closure matrix of a graph from its adjacency matrix. Warshalls algorithm can be generalized to Floyds algorithm for computing the distance matrix of a graph with weighted edges. We will generalize Boolean matrices in the same way, keeping matrix multiplication essentially equivalent to the Floyd-Warshall algorithm. This way, we get matrices over a semiring, which are similar to the so-called funny matrices. We discuss our implementation of operations on Boolean matrices and on their generalization, which make use of vector instructions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا