ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictive pion-quark BCS relation and Thornber-Feynman high-Tc gap

27   0   0.0 ( 0 )
 نشر من قبل Barry Green
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A pion-quark pairing temperature is defined by a BCS-like relation identified from a quark-level Goldberger-Treiman relation with a Nambu scalar mass gap parameter taken in the low-mass limit. This intuitive relation predicts the associated experimental lattice-gauge pairing temperature. The opposite high-mass limit predicts the sigma mass, and notably has a predictive analog in high-Tc superconductivity in the stable nondispersive energy gap as defined by Thornber-Feynman polaron dynamics.

قيم البحث

اقرأ أيضاً

118 - T. Yoshida , W. Malaeb , S. Ideta 2012
Relationship between the superconducting gap and the pseudogap has been the subject of controversies. In order to clarify this issue, we have studied the superconducting gap and pseudogap of the high-Tc superconductor La2-xSrxCuO4 (x=0.10, 0.14) by a ngle-resolved photoemission spectroscopy (ARPES). Through the analysis of the ARPES spectra above and below Tc, we have identified a superconducting coherence peak even in the anti-nodal region on top of the pseudogap of a larger energy scale. The superconducting peak energy nearly follows the pure d-wave form. The d-wave order parameter Delta_0 [defined by Delta(k)=Delta_0(cos(kxa)-cos(kya)) ] for x=0.10 and 0.14 are nearly the same, Delta_0 ~ 12-14 meV, leading to strong coupling 2Delta_0/kB Tc ~ 10. The present result indicates that the pseudogap and the superconducting gap are distinct phenomena and can be described by the two-gap scenario.
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensio nal Hubbard model are presented which show that this model qualitatively describes this gap dichotomy: One gap (antinodal) increases with less doping, a behavior long considered as reflecting the general gap behavior of the HTSC. On the other hand, the near-nodal gap does even slightly decrease with underdoping. An explanation of this unexpected behavior is given which emphasizes the crucial role of spin fluctuations in the pairing mechanism.
111 - Shuji Watanabe 2010
One of long-standing problems in mathematical studies of superconductivity is to show that the solution to the BCS gap equation is continuous in the temperature. In this paper we address this problem. We regard the BCS gap equation as a nonlinear int egral equation on a Banach space consisting of continuous functions of both $T$ and $x$. Here, $T (geq 0)$ stands for the temperature and $x$ the kinetic energy of an electron minus the chemical potential. We show that the unique solution to the BCS gap equation obtained in our recent paper is continuous with respect to both $T$ and $x$ when $T$ is small enough. The proof is carried out based on the Banach fixed-point theorem.
In the preceding work cite{watanabe3}, it is shown that the solution to the BCS gap equation for superconductivity is continuous with respect to both the temperature and the energy under the restriction that the temperature is very small. Without thi s restriction, we show in this paper that the solution is continuous with respect to both the temperature and the energy, and that the solution is Lipschitz continuous and monotonically decreasing with respect to the temperature.
51 - Shuji Watanabe 2013
From the viewpoint of operator theory, we deal with the temperature dependence of the solution to the BCS gap equation for superconductivity. When the potential is a positive constant, the BCS gap equation reduces to the simple gap equation. We first show that there is a unique nonnegative solution to the simple gap equation, that it is continuous and strictly decreasing, and that it is of class $C^2$ with respect to the temperature. We next deal with the case where the potential is not a constant but a function. When the potential is not a constant, we give another proof of the existence and uniqueness of the solution to the BCS gap equation, and show how the solution varies with the temperature. We finally show that the solution to the BCS gap equation is indeed continuous with respect to both the temperature and the energy under a certain condition when the potential is not a constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا