ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku Detection of an Intense X-Ray Flare from an A-type Star HD161084

109   0   0.0 ( 0 )
 نشر من قبل Junichiro Miura
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a serendipitous detection of an intense X-ray flare from the Tycho reference source HD 161084 during a Suzaku observation of the Galactic Center region for 20 ks. The X-ray Imaging Spectrometer (XIS) recorded a flare from this A1-type dwarf or subgiant star with a flux of 1.4x10^{-12} erg s^{-1} cm^{-2} (0.5--10 keV) and a decay time scale of 0.5 hr. The spectrum is hard with a prominent Fe XXV K alpha emission line at 6.7 keV, which is explained by a 5 keV thin-thermal plasma model attenuated by a 1.4x10^{21} cm^{-2} extinction. The low extinction, which is consistent with the optical reddening, indicates that the source is a foreground star toward the Galactic Center region. Based on the spectroscopic parallax distance of 530 pc, the peak X-ray luminosity amounts to 1x10^{32} erg s^{-1} (0.5--10 keV). This is much larger than the X-ray luminosity of ordinary late-type main-sequence stars, and the X-ray emission is unattributable to a hidden late-type companion that comprises a wide binary system with the A-star. We discuss possible natures of HD 161084 and suggest that it is most likely an interacting binary with elevated magnetic activity in the companion such as the Algol-type system. The flux detected by Suzaku during the burst is 100 times larger than the quiescent level measured using the archived XMM-Newton and Chandra data. The large flux amplification makes this star a unique example among sources of this class.

قيم البحث

اقرأ أيضاً

42 - N. Grosso 2004
LkHA312 has been observed serendipitously with the ACIS-I detector on board Chandra with 26h continuous exposure. This H_alpha emission line star belongs to the star-forming region M78 (NGC2068). From the optical and NIR data, we show that it is a pr e-main sequence (PMS) low-mass star with a weak NIR excess. This genuine T Tauri star displayed an X-ray flare with an unusual long rise phase (~8h). The X-ray emission was nearly constant during the first 18h of the observation, and then increased by a factor of 13 during a fast rise phase (~2h), and reached a factor of 16 above the quiescent X-ray level at the end of a gradual phase (~6h) showing a slower rise. To our knowledge this flare, with ~0.4-~0.5 cts/s, has the highest count rate observed so far with Chandra from a PMS low-mass star. By chance, the source position, 8.2 off-axis, protected this observation from pile-up. We make a spectral analysis of the X-ray emission versus time, showing that the plasma temperature of the quiescent phase and the flare peak reaches 29MK and 88MK, respectively. The quiescent and flare luminosities in the energy range 0.5--8keV corrected from absorption (N_H~1.7E21 cm^{-2}) are 6E30erg/s and ~1E32erg/s, respectively. The ratio of the quiescent X-ray luminosity on the LkHA312 bolometric luminosity is very high with log(L_X/L_bol)= -2.9, implying that the corona of LkHA312 reached the `saturation level. The X-ray luminosity of the flare peak reaches ~2% of the stellar bolometric luminosity. The different phases of this flare are finally discussed in the framework of solar flares, which leads to the magnetic loop height from 3.1E10 to 1E11 cm (0.2-0.5 R*, i.e., 0.5-1.3 R_sun).
We report the observation by the Compton Gamma Ray Observatory of a spectacular flare of radio source PKS 1622-297. A peak flux of 17E-6 cm^-2 s^-1 (E > 100 MeV) was observed. The corresponding isotropic luminosity is 2.9E49 erg/s. We find that PKS 1 622-297 exhibits gamma-ray intra-day variability. A flux increase by a factor of at least 3.6 was observed to occur in less than 7.1 hours (with 99% confidence). Assuming an exponential rise, the corresponding doubling time is less than 3.8 hours. A significant flux decrease by a factor of ~2 in 9.7 hours was also observed. Without beaming, the rapid flux change and large isotropic luminosity are inconsistent with the Elliot-Shapiro condition (assuming that gas accretion is the immediate source of power for the gamma-rays). This inconsistency suggests that the gamma-ray emission is beamed. A minimum Doppler factor of 8.1 is implied by the observed lack of pair-production opacity (assuming x-rays are emitted co-spatially with the gamma-rays). Simultaneous observation by EGRET and OSSE finds a spectrum adequately fit by a power law with photon index of -1.9. Although the significance is not sufficient to establish this beyond doubt, the high-energy gamma-ray spectrum appears to evolve from hard to soft as a flare progresses.
The GOES X1.5 class flare that occurred on August 30,2002 at 1327:30 UT is one of the few events detected so far at submillimeter wavelengths. We present a detailed analysis of this flare combining radio observations from 1.5 to 212 GHz (an upper lim it of the flux is also provided at 405 GHz) and X-ray. Although the observations of radio emission up to 212 GHz indicates that relativistic electrons with energies of a few MeV were accelerated, no significant hard X-ray emission was detected by RHESSI above ~ 250 keV. Images at 12--20 and 50--100 keV reveal a very compact, but resolved, source of about ~ 10 x 10. EUV TRACE images show a multi-kernel structure suggesting a complex (multipolar) magnetic topology. During the peak time the radio spectrum shows an extended flatness from ~ 7 to 35 GHz. Modeling the optically thin part of the radio spectrum as gyrosynchrotron emission we obtained the electron spectrum (spectral index delta, instantaneous number of emitting electrons). It is shown that in order to keep the expected X-ray emission from the same emitting electrons below the RHESSI background at 250 keV, a magnetic field above 500 G is necessary. On the other hand, the electron spectrum deduced from radio observations >= 50 GHz is harder than that deduced from ~ 70 - 250 keV X-ray data, meaning that there must exist a breaking energy around a few hundred keV. During the decay of the impulsive phase, a hardening of the X-ray spectrum is observed which is interpreted as a hardening of the electron distribution spectrum produced by the diffusion due to Coulomb collisions of the trapped electrons in a medium with an electron density of n_e ~ 3E10 - 5E10 cm-3.
133 - Qiang Yuan 2015
Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {it Chandra} observat ions obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare lightcurves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of $6%-14%$, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flare rate over the 14 years. In particular, we see no evidence of changing quiescent emission and flare rate around the pericenter passage of the S2 star around 2002. We show clear evidence of a short-term clustering for the ACIS-S/HETG 0th-order flares on time scale of $20-70$ ks. We further conduct detailed simulations to characterize the detection incompleteness and bias, which is critical to a comprehensive follow-up statistical analysis of flare properties. These studies together will help to establish Sgr A$^{star}$ as a unique laboratory to understand the astrophysics of prevailing low-luminosity black holes in the Universe.
We report on the first simultaneous near-infrared/X-ray detection of the Sgr A* counterpart which is associated with the massive black hole at the center of the Milky Way. The observations have been carried out using the NACO adaptive optics (AO) ins trument at the European Southern Observatorys Very Large Telescope and the ACIS-I instrument aboard the Chandra X-ray Observatory. We also report on quasi-simultaneous observations at a wavelength of 3.4 mm using the Berkeley-Illinois-Maryland Association (BIMA) array. A flare was detected in the X-domain with an excess 2-8 keV luminosity of about 6$times10^{33}$ erg/s. A fading flare of Sgr A* with $>$2 times the interim-quiescent flux was also detected at the beginning of the NIR observations, that overlapped with the fading part of the X-ray flare. Compared to 8-9 hours before the NIR/X-ray flare we detected a marginally significant increase in the millimeter flux density of Sgr A* during measurements about 7-9 hours afterwards. We find that the flaring state can be conveniently explained with a synchrotron self-Compton model involving up-scattered sub-millimeter photons from a compact source component, possibly with modest bulk relativistic motion. The size of that component is assumed to be of the order of a few times the Schwarzschild radius. The overall spectral indices $alpha_{NIR/X-ray}$ ($S_{ u}$$propto$$ u^{-alpha}$) of both states are quite comparable with a value of $sim$1.3. Since the interim-quiescent X-ray emission is spatially extended, the spectral index for the interim-quiescent state is probably only a lower limit for the compact source Sgr A*. A conservative estimate of the upper limit of the time lag between the ends of the NIR and X-ray flare is of the order of 15 minutes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا