ترغب بنشر مسار تعليمي؟ اضغط هنا

Anti-solar differential rotation and surface flow pattern on UZ Librae

106   0   0.0 ( 0 )
 نشر من قبل Kriszti\\'an Vida
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We re-investigate UZ Librae spectra obtained at KPNO in 1998 and 2000. From the 1998 data we compose 11 consecutive Doppler images using the Ca I-6439, Fe I-6393 and Fe I-6411 lines. Applying the method of average cross-correlation of contiguous Doppler images we find anti-solar differential rotation with a surface shear of alpha ~ -0.03. The pilot application of the local correlation tracking technique for the same data qualitatively confirms this result and indicates complex flow pattern on the stellar surface. From the cross-correlation of the two available Doppler images in 2000 we also get anti-solar differential rotation but with a much weaker shear of alpha ~ -0.004.

قيم البحث

اقرأ أيضاً

We demonstrate the power of the local correlation tracking technique on stellar data for the first time. We recover the spot migration pattern of the long-period RS CVn-type binary $sigma$ Gem from a set of six Doppler images from 3.6 consecutive rot ation cycles. The resulting surface flow map suggests a weak anti-solar differential rotation with $alphaapprox-0.0022pm0.0016$, and a coherent poleward spot migration with an average velocity of $220pm10$ m s$^{-1}$. This result agrees with our recent findings from another study and could also be confirmed theoretically.
Measuring surface differential rotation (DR) on different types of stars is important when characterizing the underlying stellar dynamo. It has been suggested that anti-solar DR laws can occur when strong meridional flows exist. We aim to investigate the differential surface rotation on the primary star of the RS CVn binary HU Vir by tracking its starspot distribution as a function of time. We also aim to recompute and update the values for several system parameters of the triple system HU Vir (close and wide orbits). Time-series high-resolution spectroscopy for four continuous months was obtained with the 1.2-m robotic STELLA telescope. Nine consecutive Doppler images were reconstructed from these data, using our line-profile inversion code iMap. An image cross-correlation method was applied to derive the surface differential-rotation law for HU Vir. New orbital elements for the close and the wide orbits were computed using our new STELLA radial velocities (RVs) combined with the RV data available in the literature. Photometric observations were performed with the Amadeus Automatic Photoelectric Telescope (APT), providing contemporaneous Johnson-Cousins $V$ and $I$ data for approximately 20 years. This data was used to determine the stellar rotation period and the active longitudes. We confirm anti-solar DR with a surface shear parameter $alpha$ of -0.029 $pm$ 0.005 and -0.026 $pm$ 0.009, using single-term and double-term differential rotation laws, respectively. The best fit is achieved assuming a solar-like double-term law with a lap time of $approx$ 400 d. Our orbital solutions result in a period of 10.387678 $pm$ 0.000003 days for the close orbit and 2726 $pm$ 7 d ($approx$ 7.5 yr) for the wide orbit. A Lomb-Scarge (L-S) periodogram of the pre-whitened $V$-band data reveals a strong single peak providing a rotation period of 10.391 $pm$ 0.008 d.
82 - H. Korhonen 2008
Differential rotation plays a crucial role in the alpha-omega dynamo, and thus also in creation of magnetic fields in stars with convective outer envelopes. Still, measuring the radial differential rotation on stars is impossible with the current tec hniques, and even the measurement of surface differential rotation is difficult. In this work we investigate the surface differential rotation obtained from dynamo models using similar techniques as are used on observations, and compare the results with the known radial differential rotation used when creating the Dynamo model.
56 - G. Rudiger , M. Kuker , K.L. Chan 2002
We measure the eddy viscosity in the outermost layers of the solar convection zone by comparing the rotation law computed with the Reynolds stress resulting from f-plane simulations of the angular momentum transport in rotating convection with the ob served differential rotation pattern. The simulations lead to a negative vertical and a positive horizontal angular momentum transport. The consequence is a subrotation of the outermost layers, as it is indeed indicated both by helioseismology and the observed rotation rates of sunspots. In order to reproduce the observed gradient of the rotation rate a value of about 1.5 x 10^{13} cm/s for the eddy viscosity is necessary. Comparison with the magnetic eddy diffusivity derived from the sunspot decay yields a surprisingly large magnetic Prandtl number of 150 for the supergranulation layer. The negative gradient of the rotation rate also drives a surface meridional flow towards the poles, in agreement with the results from Doppler measurements. The successful reproduction of the abnormally positive horizontal cross correlation (on the northern hemisphere) observed for bipolar groups then provides an independent test for the resulting eddy viscosity.
89 - K. J. Li , X. J. Shi , J. L. Xie 2013
Solar-cycle related variation of differential rotation is investigated through analyzing the rotation rates of magnetic fields, distributed along latitudes and varying with time at the time interval of August 1976 to April 2008. More pronounced diffe rentiation of rotation rates is found to appear at the ascending part of a Schwabe cycle than at the descending part on an average. The coefficient $B$ in the standard form of differential rotation, which represents the latitudinal gradient of rotation, may be divided into three parts within a Schwabe cycle. Part one spans from the start to the $4^{th}$ year of a Schwabe cycle, within which the absolute $B$ is approximately a constant or slightly fluctuates. Part two spans from the $4^{th}$ to the $7^{th}$ year, within which the absolute $B$ decreases. Part three spans from the $7^{th}$ year to the end, within which the absolute $B$ increases. Strong magnetic fields repress differentiation of rotation rates, so that rotation rates show less pronounced differentiation, but weak magnetic fields seem to just reflect differentiation of rotation rates. The solar-cycle related variation of solar differential rotation is inferred to the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity to differentiation of rotation rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا