ترغب بنشر مسار تعليمي؟ اضغط هنا

A thread calculus with molecular dynamics

40   0   0.0 ( 0 )
 نشر من قبل Kees Middelburg
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theory of threads, interleaving of threads, and interaction between threads and services with features of molecular dynamics, a model of computation that bears on computations in which dynamic data structures are involved. Threads can interact with services of which the states consist of structured data objects and computations take place by means of actions which may change the structure of the data objects. The features introduced include restriction of the scope of names used in threads to refer to data objects. Because that feature makes it troublesome to provide a model based on structural operational semantics and bisimulation, we construct a projective limit model for the theory.


قيم البحث

اقرأ أيضاً

We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the b ehaviours exhibited by the components of execution environments of instruction sequences. In a paper concerned with probabilistic instruction sequences, we proposed several kinds of probabilistic instructions and gave an informal explanation for each of them. The probabilistic features added to the extension of basic thread algebra with thread-service interaction make it possible to give a formal explanation in terms of non-probabilistic instructions and probabilistic services. The probabilistic features added to the extensions of basic thread algebra with strategic interleaving make it possible to cover strategies corresponding to probabilistic scheduling algorithms.
198 - Ioana Cristescu 2011
We present a type system to guarantee termination of pi-calculus processes that exploits input/output capabilities and subtyping, as originally introduced by Pierce and Sangiorgi, in order to analyse the usage of channels. We show that our system imp roves over previously existing proposals by accepting more processes as terminating. This increased expressiveness allows us to capture sensible programming idioms. We demonstrate how our system can be extended to handle the encoding of the simply typed lambda-calculus, and discuss questions related to type inference.
173 - matthew hennessy 2010
We develop a version of the pi-calculus, picost, where channels are interpreted as resources which have costs associated with them. Code runs under the financial responsibility of owners; they must pay to use resources, but may profit by providing th em. We provide a proof methodology for processes described in picost based on bisimulations. The underlying behavioural theory is justified via a contextual characterisation. We also demonstrate its usefulness via examples.
95 - Cole Comfort 2020
We give a complete presentation for the fragment, ZX&, of the ZX-calculus generated by the Z and X spiders (corresponding to copying and addition) along with the not gate and the and gate. To prove completeness, we freely add a unit and counit to the category TOF generated by the Toffoli gate and ancillary bits, showing that this yields the full subcategory of finite ordinals and functions with objects powers of two; and then perform a two way translation between this category and ZX&. A translation to some extension of TOF, as opposed to some fragment of the ZX-calculus, is a natural choice because of the multiplicative nature of the Toffoli gate. To this end, we show that freely adding counits to the semi-Frobenius algebras of a discrete inverse category is the same as constructing the Cartesian completion. In particular, for a discrete inverse category, the category of classical channels, the Cartesian completion and adding counits all produce the same category. Therefore, applying these constructions to TOF produces the full subcategory of finite ordinals and partial maps with objects powers of two. By glueing together the free counit completion and the free unit completion, this yields qubit multirelations.
Lambek calculus is a logical foundation of categorial grammar, a linguistic paradigm of grammar as logic and parsing as deduction. Pentus (2010) gave a polynomial-time algorithm for determ- ining provability of bounded depth formulas in the Lambek ca lculus with empty antecedents allowed. Pentus algorithm is based on tabularisation of proof nets. Lambek calculus with brackets is a conservative extension of Lambek calculus with bracket modalities, suitable for the modeling of syntactical domains. In this paper we give an algorithm for provability the Lambek calculus with brackets allowing empty antecedents. Our algorithm runs in polynomial time when both the formula depth and the bracket nesting depth are bounded. It combines a Pentus-style tabularisation of proof nets with an automata-theoretic treatment of bracketing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا