ﻻ يوجد ملخص باللغة العربية
The utility of limited feedback for coding over an individual sequence of DMCs is investigated. This study complements recent results showing how limited or noisy feedback can boost the reliability of communication. A strategy with fixed input distribution $P$ is given that asymptotically achieves rates arbitrarily close to the mutual information induced by $P$ and the state-averaged channel. When the capacity achieving input distribution is the same over all channel states, this achieves rates at least as large as the capacity of the state averaged channel, sometimes called the empirical capacity.
The zero-error feedback capacity of the Gelfand-Pinsker channel is established. It can be positive even if the channels zero-error capacity is zero in the absence of feedback. Moreover, the error-free transmission of a single bit may require more tha
The feedback sum-rate capacity is established for the symmetric $J$-user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of
We introduce a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes our method exploits code symme
We investigate spatially coupled code ensembles. For transmission over the binary erasure channel, it was recently shown that spatial coupling increases the belief propagation threshold of the ensemble to essentially the maximum a-priori threshold of
We show that Reed-Muller codes achieve capacity under maximum a posteriori bit decoding for transmission over the binary erasure channel for all rates $0 < R < 1$. The proof is generic and applies to other codes with sufficient amount of symmetry as