ﻻ يوجد ملخص باللغة العربية
We investigate the prospects for the discovery at the CERN Large Hadron Collider or at the Fermilab Tevatron of neutral Higgs bosons through the channel where the Higgs are produced together with a single bottom quark and the Higgs decays into a pair of tau leptons, $bg to bphi^0 to btau^+tau^-, phi^0 = h^0, H^0, A^0$. We work within the framework of the minimal supersymmetric model. The dominant physics background from the production of $btau^+tau^-$, $jtau^+tau^-$ ($j = g, u, d, s, c$), $bbar{b}W^+W^-$, $W+2j$ and $Wbj$ is calculated with realistic acceptance cuts and efficiencies. Promising results are found for the CP-odd pseudoscalar ($A^0$) and the heavier CP-even scalar ($H^0$) Higgs bosons with masses up to one TeV.
We investigate the prospects for the discovery of a neutral Higgs boson produced with one bottom quark followed by Higgs decay into a pair of bottom quarks at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron Collider. We work within the
Possible realistic scenarios are investigated in the minimal supersymmetric standard model (MSSM) Higgs sector extended by dimension-six effective operators. The CP-odd Higgs boson with low mass around 30--90 GeV could be consistently introduced in t
Recently, it has been argued that various measures of SUSY naturalness-- electroweak, Higgs mass and EENZ/BG-- when applied consistently concur with one another and make very specific predictions for natural supersymmetric spectra. Highly natural spe
We discuss the role that Higgs coupling measurements can play in differentiating supersymmetric extensions of the Standard Model. Fitting current LHC data to the Higgs couplings, we find that the likelihood fit shows a preference in the direction of
A brief overview of the prospects for detecting the Higgs bosons of the Minimal Supersymmetric Model at future colliders is presented.