ﻻ يوجد ملخص باللغة العربية
Electron energy-loss spectroscopy (EELS) performed in transmission electron microscopes is shown to directly render the photonic local density of states (LDOS) with unprecedented spatial resolution, currently below the nanometer. Two special cases are discussed in detail: (i) 2D photonic structures with the electrons moving along the translational axis of symmetry and (ii) quasi-planar plasmonic structures under normal incidence. Nanophotonics in general and plasmonics in particular should benefit from these results connecting the unmatched spatial resolution of EELS with its ability to probe basic optical properties like the photonic LDOS.
Exploiting the information provided by electron energy-loss spectroscopy (EELS) requires reliable access to the low-loss region where the zero-loss peak (ZLP) often overwhelms the contributions associated to inelastic scatterings off the specimen. He
Transmission electron microscopy, scanning transmission electron tomography, and electron energy loss spectroscopy were used to characterize three-dimensional artificial Si nanostructures called metalattices, focusing on Si metalattices synthesized b
The inelastic scattering of electrons is one route to study the vibrational and electronic properties of materials. Such experiments, also called electron energy-loss spectroscopy, are particularly useful for the investigation of the collective excit
The spatial distributions of anti-bonding $pi^ast$ and $sigma^ast$ states in epitaxial graphene multilayers are mapped using electron energy-loss spectroscopy in a scanning transmission electron microscope. Inelastic channeling simulations validate t
Recently it has been demonstrated that a careful treatment of both longitudinal and transverse matrix elements in electron energy loss spectra can explain the mystery of relativistic effects on the {it magic angle}. Here we show that there is an addi