ﻻ يوجد ملخص باللغة العربية
We study both numerically and analytically the possibility of using an adiabatic passage control method to construct a Mach-Zehnder interferometer (MZI) for Bose-Einstein condensates (BECs) in the time domain, in exact one-to-one correspondence with the traditional optical MZI that involves two beam splitters and two mirrors. The interference fringes one obtains from such a minimum-disturbance set up clearly demonstrates that, fundamentally, an atom laser is not monochromatic due to interatomic interactions. We also consider how the amount of entanglement in the system correlates to the interference fringes.
We report the experimental realisation of a multibeam atom laser. A single continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via an optical Raman transition. The atom laser is subsequently split into up to five atomic beams wi
We report the achievement of an optically guided and quasi-monomode atom laser, in all spin projection states ($m_F =$ -1, 0 and $+1$) of F=1 in Rubidium 87. The atom laser source is a Bose-Einstein condensate (BEC) in a crossed dipole trap, purified
We study the transient dynamics that arise during the formation of an atom laser beam in a tight waveguide. During the time evolution the density profile develops a series of wiggles which are related to the diffraction in time phenomenon. The apodiz
Tunnelling of material particles through a classically impenetrable barrier constitutes one of the hallmark effects of quantum physics. When interactions between the particles compete with their mobility through a tunnel junction, intriguing novel dy
We demonstrate the operation of an atom interferometer based on a weakly interacting Bose-Einstein condensate. We strongly reduce the interaction induced decoherence that usually limits interferometers based on trapped condensates by tuning the s-wav