ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground-State Properties for Coupled Bose-Einstein Condensates inside a Cavity Quantum Electrodynamics

468   0   0.0 ( 0 )
 نشر من قبل Gang Chen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analytically investigate the ground-state properties of two-component Bose-Einstein condensates with few ⁸⁷Rb atoms inside a high-quality cavity quantum electrodynamics. In the SU(2) representation for atom, this quantum system can be realized a generalized Dicke model with a quadratic term arising from the interatomic interactions, which can be controlled experimentally by Feshbach resonance technique. Moreover, this weak interspecies interaction can give rise to an important zero-temperature quantum phase transition from the normal to the superradiant phases, where the atomic ensemble in the normal phase is collectively unexcited while is macroscopically excited with coherent radiations in the superradiant phase. Finally, we propose to observe this predicted quantum phase transition by measuring the direct and striking signatures of the photon field in terms of a heterodyne detector out of the cavity.



قيم البحث

اقرأ أيضاً

We report the experimental study of a hybrid quantum solid state system comprising two-level artificial atoms coupled to cavity confined optical and vibrational modes. In this system combining cavity quantum electrodynamics and cavity optomechanics, excitons in quantum wells play the role of the two-level atoms and are strongly coupled to the optical field leading to mixed polariton states. The planar optical microcavities are laterally microstructured, so that polaritons can be confined in wires, 3D traps, and arrays of traps, providing an additional tuning degree of freedom for the polariton energies. Upon increasing the non-resonant laser excitation power, a Bose-Einstein condensation of the polaritons is observed. Optomechanical induced amplification type of experiments with an additional weak laser probe clearly identify the coupling of these Bose-Einstein condensates to 20~GHz breathing-like vibrations confined in the same cavities. With single continuous wave non-resonant laser excitation, and once the laser power overpasses the threshold for Bose-Einstein condensation in trap arrays, mechanical self-oscillation similar to phonon ``lasing is induced with the concomitant observation of Mollow-triplet type mechanical sidebands on the Bose-Einstein condensate emission. High-resolution spectroscopic photoluminescence experiments evidence that these vibrational side-band resolved lines are enhanced when neighboring traps are red-detuned with respect to the BEC emission at overtones of the fundamental 20 GHz breathing mode frequency. These results constitute the first demonstration of coherent cavity polariton optomechanics and pave the way towards a novel type of hybrid devices for quantum technologies, phonon lasers, and phonon-photon bidirectional translators.
Quantum systems in Fock states do not have a phase. When two or more Bose-Einstein condensates are sent into interferometers, they nevertheless acquire a relative phase under the effect of quantum measurements. The usual explanation relies on spontan eous symmetry breaking, where phases are ascribed to all condensates and treated as unknown classical quantities. However, this image is not always sufficient: when all particles are measured, quantum mechanics predicts probabilities that are sometimes in contradiction with it, as illustrated by quantum violations of local realism. In this letter, we show that interferometers can be used to demonstrate a large variety of violations with an arbitrarily large number of particles. With two independent condensates, we find violations of the BCHSH inequalities, as well as new N-body Hardy impossibilities. With three condensates, we obtain new GHZ (Greenberger, Horne and Zeilinger) type contradictions.
It is shown that the distinct oscillations of the purity of the single-particle density matrix for many-body open quantum systems with balanced gain and loss reported by Dast et al. [Phys. Rev. A 93, 033617 (2016)] can also be found in closed quantum systems of which subsystems experience a gain and loss of particles. This is demonstrated with two different lattice setups for cold atoms, viz. a ring of six lattice sites with periodic boundary conditions and a linear chain of four lattice wells. In both cases pronounced purity oscillations are found, and it is shown that they can be made experimentally accessible via the average contrast in interference experiments.
Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information proces sing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose-Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.
When ground state atoms are accelerated through a high Q microwave cavity, radiation is produced with an intensity which can exceed the intensity of Unruh acceleration radiation in free space by many orders of magnitude. The cavity field at steady st ate is described by a thermal density matrix under most conditions. However, under some conditions gain is possible, and when the atoms are injected in a regular fashion, the radiation can be produced in a squeezed state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا