ﻻ يوجد ملخص باللغة العربية
We consider the transmission of a memoryless bivariate Gaussian source over an average-power-constrained one-to-two Gaussian broadcast channel. The transmitter observes the source and describes it to the two receivers by means of an average-power-constrained signal. Each receiver observes the transmitted signal corrupted by a different additive white Gaussian noise and wishes to estimate the source component intended for it. That is, Receiver~1 wishes to estimate the first source component and Receiver~2 wishes to estimate the second source component. Our interest is in the pairs of expected squared-error distortions that are simultaneously achievable at the two receivers. We prove that an uncoded transmission scheme that sends a linear combination of the source components achieves the optimal power-versus-distortion trade-off whenever the signal-to-noise ratio is below a certain threshold. The threshold is a function of the source correlation and the distortion at the receiver with the weaker noise.
The problem of channel coding over the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC) with additive independent Gaussian states is considered. The states are known in a noncausal manner to the encoder, and it wishes to minimize
The problem of joint source-channel coding in transmitting independent sources over interference channels with correlated receiver side information is studied. When each receiver has side information correlated with its own desired source, it is show
Covariance matrix estimation concerns the problem of estimating the covariance matrix from a collection of samples, which is of extreme importance in many applications. Classical results have shown that $O(n)$ samples are sufficient to accurately est
The outage performance of multiple-input multiple-output (MIMO) technique has received intense attention in order to ensure the reliability requirement for mission-critical machine-type communication (cMTC) applications. In this paper, the outage pro
This paper suggests the use of multiple distributed intelligent reflecting surfaces (IRSs) towards a smarter control of the propagation environment. Notably, we also take into account the inevitable correlated Rayleigh fading in IRS-assisted systems.