ﻻ يوجد ملخص باللغة العربية
We report direct observation of the strong exciton-photon coupling in ZnO tapered whispering gallery (WG) microcavity at room temperature. By scanning excitations along the tapered arm of ZnO tetrapod using micro-photoluminescence spectrometer with different polarizations, we observed a transition from the pure WG optical modes in the weak interaction regime to the excitonic polariton in the strong coupling regime. The experimental observations are well described by using the plane wave model including excitonic polariton dispersion relation. This provides a direct mapping of the polariton dispersion, and thus a comprehensive picture for coupling of different excitons with differently polarized WG modes.
We demonstrate a thermal infrared (IR) detector based on an ultra-high-quality-factor (Q) whispering-gallery-mode (WGM) microtoroidal silica resonator, and investigate its performance to detect IR radiation at 10 micron wavelength. The bandwidth and
We demonstrate that yttrium iron garnet microspheres support optical whispering gallery modes similar to those in non-magnetic dielectric materials. The direction of the ferromagnetic moment tunes both the resonant frequency via the Voigt effect as w
Semiconductor microcavities offer a unique system to investigate the physics of weakly interacting bosons. Their elementary excitations, polaritons--a mixture of excitons and photons--behave, in the low density limit, as bosons that can undergo a pha
Excitons, composite electron-hole quasiparticles, are known to play an important role in optoelectronic phenomena in many semiconducting materials. Recent experiments and theory indicate that the band-gap optics of the newly discovered monolayer tran
An add-drop filter (ADF) fabricated using a whispering gallery mode resonator has different crosstalks for add and drop functions due to non-zero intrinsic losses of the resonator. Here, we show that introducing gain medium in the resonator and optic