ترغب بنشر مسار تعليمي؟ اضغط هنا

Lateral Casimir-Polder force with corrugated surfaces

233   0   0.0 ( 0 )
 نشر من قبل Diego Dalvit
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the lateral Casimir-Polder force on a ground state atom on top of a corrugated surface, up to first order in the corrugation amplitude. Our calculation is based on the scattering approach, which takes into account nonspecular reflections and polarization mixing for electromagnetic quantum fluctuations impinging on real materials. We compare our first order exact result with two commonly used approximation methods. We show that the proximity force approximation (large corrugation wavelengths) overestimates the lateral force, while the pairwise summation approach underestimates it due to the non-additivity of dispersion forces. We argue that a frequency shift measurement for the dipolar lateral oscillations of cold atoms could provide a striking demonstration of nontrivial geometrical effects on the quantum vacuum.



قيم البحث

اقرأ أيضاً

We study the spontaneous emission of an excited atom close to an optical nanofiber and the resulting scattering forces. For a suitably chosen orientation of the atomic dipole, the spontaneous emission pattern becomes asymmetric and a resonant Casimir --Polder force parallel to the fiber axis arises. For a simple model case, we show that the such a lateral force is due to the interaction of the circularly oscillating atomic dipole moment with its image inside the material. With the Casimir--Polder energy being constant in the lateral direction, the predicted lateral force does not derive from a potential in the usual way. Our results have implications for optical force measurements on a substrate as well as for laser cooling of atoms in nanophotonic traps.
114 - A. Laliotis , M. Ducloy 2015
We take a closer look at the fundamental Casimir-Polder interaction between quantum particles and dispersive dielectric surfaces with surface polariton or plasmon resonances. Linear response theory shows that in the near field, van der Waals, regime the free energy shift of a particle contains a thermal component that depends exclusively on the population/excitation of the evanescent surface polariton/plasmon modes. Our work makes evident the link between particle surface interaction and near field thermal emission and demonstrates how this can be used to engineer Casimir-Polder forces. We also examine how the exotic effects of surface waves are washed out as the distance from the surface increases. In the case of molecules or excited state atoms, far field approximations result in a classical dipole-dipole interaction which depends on the surface reflectivity and the mean number of photons at the frequency of the atomic/molecular transition. Finally we present numerical results for the CP interaction between Cs atoms and various dielectric surfaces with a single polariton resonance and discuss the implications of temperature and retardation effects for specific spectroscopic experiments.
We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole os cillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory.
Polarisable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional, velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalised Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atom and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface plasmon frequency.
In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom an d a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit, or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between two parallel conducting plates. In that case, three-body effects are shown to be small, and are dominated by three- and four-scattering terms. The atom-wedge calculation is illustrated by an analogous scalar situation, described in the Appendix. The wedge-wedge-atom geometry is difficult to analyze because this is a scale-free problem. But it is not so hard to investigate the three-body corrections to the interaction between an anisotropic atom or nanoparticle and a pair of parallel conducting cylinders, and show that the three-body effects are very small and do not affect the Casimir-Polder repulsion at large distances between the cylinders. Finally, we consider whether such highly anisotropic atoms needed for repulsion are practically realizable. Since this appears rather difficult to accomplish, it may be more feasible to observe such effects with highly anisotropic nano particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا