ﻻ يوجد ملخص باللغة العربية
The distributed source coding problem is considered when the sensors, or encoders, are under Byzantine attack; that is, an unknown group of sensors have been reprogrammed by a malicious intruder to undermine the reconstruction at the fusion center. Three different forms of the problem are considered. The first is a variable-rate setup, in which the decoder adaptively chooses the rates at which the sensors transmit. An explicit characterization of the variable-rate achievable sum rates is given for any number of sensors and any groups of traitors. The converse is proved constructively by letting the traitors simulate a fake distribution and report the generated values as the true ones. This fake distribution is chosen so that the decoder cannot determine which sensors are traitors while maximizing the required rate to decode every value. Achievability is proved using a scheme in which the decoder receives small packets of information from a sensor until its message can be decoded, before moving on to the next sensor. The sensors use randomization to choose from a set of coding functions, which makes it probabilistically impossible for the traitors to cause the decoder to make an error. Two forms of the fixed-rate problem are considered, one with deterministic coding and one with randomized coding. The achievable rate regions are given for both these problems, and it is shown that lower rates can be achieved with randomized coding.
The distributed source coding problem is considered when the sensors, or encoders, are under Byzantine attack; that is, an unknown number of sensors have been reprogrammed by a malicious intruder to undermine the reconstruction at the fusion center.
Distributed source coding is the task of encoding an input in the absence of correlated side information that is only available to the decoder. Remarkably, Slepian and Wolf showed in 1973 that an encoder that has no access to the correlated side info
We investigate the impact of Byzantine attacks in distributed detection under binary hypothesis testing. It is assumed that a fraction of the transmitted sensor measurements are compromised by the injected data from a Byzantine attacker, whose purpos
The Byzantine distributed quickest change detection (BDQCD) is studied, where a fusion center monitors the occurrence of an abrupt event through a bunch of distributed sensors that may be compromised. We first consider the binary hypothesis case wher
We consider the problem of one-way communication when the recipient does not know exactly the distribution that the messages are drawn from, but has a prior distribution that is known to be close to the source distribution, a problem first considered