ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical potential shift induced by double-exchange and polaronic effects in Nd_{1-x}Sr_xMnO_3

110   0   0.0 ( 0 )
 نشر من قبل Kazuaki Ebata
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the chemical potential shift as a function of temperature in Nd$_{1-x}$Sr$_x$MnO$_3$ (NSMO) by measurements of core-level photoemission spectra. For ferromagnetic samples ($x=0.4$ and 0.45), we observed an unusually large upward chemical potential shift with decreasing temperature in the low-temperature region of the ferromagnetic metallic (FM) phase. This can be explained by the double-exchange (DE) mechanism if the $e_g$ band is split by dynamical/local Jahn-Teller effect. The shift was suppressed near the Curie temperature ($T_C$), which we attribute to the crossover from the DE to lattice-polaron regimes.



قيم البحث

اقرأ أيضاً

141 - M. Patra , M. Thakur , S. Majumdar 2008
We report the new results of exchange bias effect in Nd_{1-x}Sr_{x}CoO_3 for x = 0.20 and 0.40, where the exchange bias phenomenon is involved with the ferrimagnetic (FI) state in a spontaneously phase separated system. The zero-field cooled magnetiz ation exhibits the FI (T_{FI}) and ferromagnetic (T_C) transitions at ~ 23 and sim 70 K, respectively for x = 0.20. The negative horizontal and positive vertical shifts of the magnetic hysteresis loops are observed when the system is cooled through T_{FI} in presence of a positive static magnetic field. Training effect is observed for x = 0.20, which could be interpreted by a spin configurational relaxation model. The unidirectional shifts of the hysteresis loops as a function of temperature exhibit the absence of exchange bias above T_{FI} for x = 0.20. The analysis of the cooling field dependence of exchange bias field and magnetization indicates that the ferromagnetic (FM) clusters consist of single magnetic domain with average size around sim 20 and ~ 40 AA ~ for x = 0.20 and 0.40, respectively. The sizes of the FM clusters are close to the percolation threshold for x = 0.20, which grow and coalesce to form the bigger size for x = 0.40 resulting in a weak exchange bias effect.
311 - M. Kh. Hamad , Y. Maswadeh , 2019
We investigate the effect of Ni${text -}$substitution on the crystalline structure and the critical behavior of $Nd_{0.6}Sr_{0.4}Mn_{1-x}Ni_{x}O_{3}$ (0.00 $leq$ x $leq$ 0.20) perovskite. X${text -}$ray diffraction patterns revealed that the major ph ase in all samples is the orthorhombic structure with space group $textit{Pnma}$. Rietveld refinement revealed a linear reduction in the lattice parameters along with monotonic reduction in the O2${text -}$Mn${text -}$O2 angel with increasing Ni concentration. The modified Arrott plots and the Kouvel${text -}$Fisher method have been used to analyze the magnetization isotherms near the paramagnetic to ferromagnetic (PM${text -}$FM) phase transition. The obtained critical exponents ($beta$, $gamma$ and $delta$) revealed that the Ni${text -}$free sample is consistent with 3D${text -}$Heisenberg like behavior. However, upon Ni${text -}$substitution, the critical exponents exhibit a mean field like behavior. The reliability of the obtained critical exponent ($beta$, $gamma$ and $delta$) values have been confirmed by the universal scaling behavior of the isothermal magnetization near the transition temperature.
141 - S. S. Acharya 2019
In this paper, high Fe-concentration Fe$_{1-x}$Ni$_{x}$ alloys were investigated using high resolution X-ray photoelectron spectroscopy (XPS) down to 10K temperature. The Fe 2s core level exhibits three features, two low binding features correspondin g to exchange interaction between ionized 2s core level and the unpaired 3d electrons. The high binding energy feature corresponds to the screening of 2s core hole by 4s conduction electrons. Our studies suggest high local magnetic moments on Fe sites.
Establishing the physical mechanism governing exchange interactions is fundamental for exploring exotic phases such as the quantum spin liquids (QSLs) in real materials. In this work, we address exchange interactions in Sr2CuTe$_{1-x}$W$_{x}$O, a ser ies of double perovskites that realize the spin-1/2 square lattice and were suggested to harbor a QSL ground state arising from random distribution of non-magnetic ions. Our {it ab initio} multi-reference configuration interaction calculations show that replacing Te atoms with W atoms changes the dominant couplings from nearest to next-nearest neighbor explained by the crucial role of unoccupied states of non-magnetic ions in the super-superexchange mechanism. Combined with spin-wave theory simulations, our calculated exchange couplings provide an excellent description of the inelastic neutron scattering spectra of the end compounds, as well as explain the magnetic excitations in Sr2CuTe$_{0.5}$W$_{0.5}$O as emerging from the bond-disordered exchange couplings. Our results provide crucial understanding of the role of non-magnetic cations in exchange interactions paving the way to further exploration of QSL phases in bond-disordered materials.
300 - M.J. Han , X. Wan , S.Y. Savrasov 2008
To clarify the role of the Kondo effect in screening local magnetic moments of Plutonium 5f--electrons as well as its competition to the RKKY interactions we use a combination of density functional theory with static Hartree Fock and dynamic Hubbard 1 approximations to calculate the strength of both the Kondo exchange, J_K, and of the RKKY exchange, J_RKKY, couplings for Pu{1-x}Am{x} system as a function of x. We find that J_K increases despite the atomic volume gets larger with the Am doping due to unexpected enhancement of hybridization between f and conduction electrons in the vicinity of the Fermi level. At the same time, the RKKY exchange is shown to reduce smoothly with increasing x. Our results imply that the Kondo effect should be robust against the increase in interatomic spacing of this alloy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا