ترغب بنشر مسار تعليمي؟ اضغط هنا

A Class of Monotonic Quantities along the Ricci Flow

185   0   0.0 ( 0 )
 نشر من قبل Jun Ling
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Jun Ling




اسأل ChatGPT حول البحث

We construct a class of monotonic quantities along the normalized Ricci flow on closed n-dimensional manifolds.



قيم البحث

اقرأ أيضاً

208 - Jun Ling 2007
We study some asymptotic behavior of the first nonzero eigenvalue of the Lalacian along the normalized Ricci flow and give a direct short proof for an asymptotic upper limit estimate.
This book gives an introduction to fundamental aspects of generalized Riemannian, complex, and Kahler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as `canonical metrics in generalized Riemannian and complex geometry. The generalized Ricci flow is introduced as a tool for constructing such metrics, and extensions of the fundamental Hamilton/Perelman regularity theory of Ricci flow are proved. These results are refined in the setting of generalized complex geometry, where the generalized Ricci flow is shown to preserve various integrability conditions, taking the form of pluriclosed flow and generalized Kahler-Ricci flow. This leads to global convergence results, and applications to complex geometry. A purely mathematical introduction to the physical idea of T-duality is given, and a discussion of its relationship to generalized Ricci flow.
We consider a geometric flow introduced by Gigli and Mantegazza which, in the case of smooth compact manifolds with smooth metrics, is tangen- tial to the Ricci flow almost-everywhere along geodesics. To study spaces with geometric singularities, we consider this flow in the context of smooth manifolds with rough metrics with sufficiently regular heat kernels. On an appropriate non- singular open region, we provide a family of metric tensors evolving in time and provide a regularity theory for this flow in terms of the regularity of the heat kernel. When the rough metric induces a metric measure space satisfying a Riemannian Curvature Dimension condition, we demonstrate that the distance induced by the flow is identical to the evolving distance metric defined by Gigli and Mantegazza on appropriate admissible points. Consequently, we demonstrate that a smooth compact manifold with a finite number of geometric conical singularities remains a smooth manifold with a smooth metric away from the cone points for all future times. Moreover, we show that the distance induced by the evolving metric tensor agrees with the flow of RCD(K, N) spaces defined by Gigli-Mantegazza.
237 - Bing-Long Chen 2010
In this paper, we derive some local a priori estimates for Ricci flow. This gives rise to some strong uniqueness theorems. As a corollary, let $g(t)$ be a smooth complete solution to the Ricci flow on $mathbb{R}^{3}$, with the canonical Euclidean met ric $E$ as initial data, then $g(t)$ is trivial, i.e. $g(t)equiv E$.
138 - Jun Ling 2009
We prove a comparison theorem for the compact surfaces with negative Euler characteristic via the Ricci flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا