ترغب بنشر مسار تعليمي؟ اضغط هنا

STACEE Observations of 1ES 1218+304

295   0   0.0 ( 0 )
 نشر من قبل Reshmi Mukherjee
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis and results of recent high-energy gamma-ray observations of the high energy-peaked BL Lac (HBL) object 1ES 1218+304 with the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE). 1ES 1218+304 is an X-ray bright HBL at a redshift z=0.182. It has been predicted to be a gamma-ray emitter above 100 GeV, detectable by ground-based Cherenkov telescopes. Recently this source has been detected by MAGIC and VERITAS, confirming these predictions. STACEEs sensitivity to astrophysical sources at energies above 100 GeV allows it to explore high energy sources such as X-ray bright active galaxies and gamma-ray bursts. We present results from STACEE observations of 1ES 1218+304 in the 2006 and 2007 observing seasons.

قيم البحث

اقرأ أيضاً

The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with a statistical significance o f 10.4 standard deviations (10.4 sigma) for the observations taken during the first three months of 2007, confirming the discovery of this object made by the MAGIC collaboration. The photon spectrum between ~160 GeV and ~1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34_stat +/- 0.2_sys. The integral flux is Phi(E > 200 GeV) = (12.2 +/- 2.6) X 10^-12 cm^-2 s^-1, which corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for VHE flux variability. Using lower limits on the density of the extragalactic background light in the near to mid-infrared we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum has an index that is harder than Gamma = 2.32 +/- 0.37_stat. When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+304 is likely to be harder than Gamma = 1.86 +/- 0.37_stat.
199 - S.S. Sun , H.L. Li (2 2021
We here report a monitor of the BL Lac object 1ES 1218+304 in both B- and R-bands by the GWAC-F60A telescope in eight nights, when it was triggerd to be at its highest X-ray flux in history by the VERITAS Observatory and Swift follow-ups. Both ANOVA and $chi^2$-test enable us to clearly reveal an intra-day variability in optical wavelengths in seven out of the eight nights. A bluer-when-brighter chromatic relationship has been clearly identified in five out of the eight nights, which can be well explained by the shock-in-jet model. In addtion, a quasi-periodic oscilation phenomenon in both bands could be tentatively identified in the first night. A positive delay between the two bands has been revealed in three out of the eight nights, and a negative one in the other nights. The identfied minimum time delay enables us to estimate the $M_{mathrm{BH}}=2.8times10^7 rm M_{odot}$that is invalid.
We present the analysis and results of recent high-energy gamma-ray observations of the BL Lac object 3C 66A conducted with the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE). During the 2003-2004 observing season, STACEE extensively ob served 3C 66A as part of a multiwavelength campaign on the source. A total of 33.7 hours of data was taken on the source, plus an equivalent-duration background observation. After cleaning the data set a total of 16.3 hours of live time remained, and a net on-source excess of 1134 events was seen against a background of 231742 events. At a significance of 2.2 standard deviations this excess is insufficient to claim a detection of 3C 66A, but is used to establish flux upper limits for the source.
We report on observations of the blazar W Comae (ON+231) with the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), a wavefront-sampling atmospheric Cherenkov telescope, in the spring of 2003. In a data set comprising 10.5 hours of ON-sou rce observing time, we detect no significant emission from W Comae. We discuss the implications of our results in the context of the composition of the relativistic jet in W Comae, examining both leptonic and hadronic models for the jet. We derive 95% confidence level upper limits on the flux at the level of 1.5--3.5 x 10^{-10} cm^{-2} s^{-1} above 100 GeV for the leptonic models, or 0.5--1.1 x 10^{-10} cm^{-2} s^{-1} above 150 GeV for the hadronic models.
The active galaxy Markarian 421 underwent a substantial outburst in early 2001. Between January and May of that year, the STACEE detector was used to observe the source in gamma-rays between the energies of 50 and 500 GeV. These observations represen t the lowest energy gamma-ray detection of this outburst by a ground-based experiment. Here we present results from these observations, which indicate an average integral gamma-ray flux of (8.0 +/- 0.7 +/- 1.5)x10^-10 1/cm^2/s. above 140 GeV. We also present a light curve for Markarian 421 as observed by STACEE from March to May, and compare our temporal, as well as spectral, measurements to those of other experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا