ترغب بنشر مسار تعليمي؟ اضغط هنا

Hook-content formulae for symplectic and orthogonal tableaux

336   0   0.0 ( 0 )
 نشر من قبل Anna Stokke
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By considering the specialisation $s_{lambda}(1,q,q^2,...,q^{n-1})$ of the Schur function, Stanley was able to describe a formula for the number of semistandard Young tableaux of shape $lambda$ in terms of two properties of the boxes in the diagram for $lambda$. Using specialisations of symplectic and orthogonal Schur functions, we derive corresponding formulae, first given by El Samra and King, for the number of semistandard symplectic and orthogonal $lambda$-tableaux.



قيم البحث

اقرأ أيضاً

84 - Seung Jin Lee 2019
In 1976, King defined certain tableaux model, called King tableaux in this paper, counting weight multiplicities of irreducible representation of the symplectic group $Sp(2m)$ for a given dominant weight. Since Kashiwara defined crystals, it is an op en problem to provide a crystal structure on King tableaux. In this paper, we present crystal structures on King tableaux and semistandard oscillating tableaux. The semistandard oscillating tableaux naturally appear as $Q$-tableaux in the symplectic version of RSK algorithms. As an application, we discuss Littlewood-Richardson coefficients for $Sp(2m)$ in terms of semistandard oscillating tableaux.
In this paper, we study a new cyclic sieving phenomenon on the set $mathsf{SST}_n(lambda)$ of semistandard Young tableaux with the cyclic action $mathsf{c}$ arising from its $U_q(mathfrak{sl}_n)$-crystal structure. We prove that if $lambda$ is a Youn g diagram with $ell(lambda) < n$ and $gcd( n, |lambda| )=1$, then the triple $left( mathsf{SST}_n(lambda), mathsf{C}, q^{- kappa(lambda)} s_lambda(1,q, ldots, q^{n-1}) right) $ exhibits the cyclic sieving phenomenon, where $mathsf{C}$ is the cyclic group generated by $mathsf{c}$. We further investigate a connection between $mathsf{c}$ and the promotion $mathsf{pr}$ and show the bicyclic sieving phenomenon given by $mathsf{c}$ and $mathsf{pr}^n$ for hook shape.
We define the superclasses for a classical finite unipotent group $U$ of type $B_{n}(q)$, $C_{n}(q)$, or $D_{n}(q)$, and show that, together with the supercharacters defined in a previous paper, they form a supercharacter theory. In particular, we pr ove that the supercharacters take a constant value on each superclass, and evaluate this value. As a consequence, we obtain a factorization of any superclass as a product of elementary superclasses. In addition, we also define the space of superclass functions, and prove that it is spanned by the supercharacters. As as consequence, we (re)obtain the decomposition of the regular character as an orthogonal linear combination of supercharacters. Finally, we define the supercharacter table of $U$, and prove various orthogonality relations for supercharacters (similar to the well-known orthogonality relations for irreducible characters).
We define and study supercharacters of the classical finite unipotent groups of symplectic and orthogonal types (over any finite field of odd characteristic). We show how supercharacters for groups of those types can be obtained by restricting the su percharacter theory of the finite unitriangular group, and prove that supercharacters are orthogonal and provide a partition of the set of all irreducible characters. We also describe all irreducible characters of maximum degree in terms of the root system, and show how they can be obtained as constituents of particular supercharacters.
Given a symmetric polynomial $P$ in $2n$ variables, there exists a unique symmetric polynomial $Q$ in $n$ variables such that [ P(x_1,ldots,x_n,x_1^{-1},ldots,x_n^{-1}) =Q(x_1+x_1^{-1},ldots,x_n+x_n^{-1}). ] We denote this polynomial $Q$ by $Phi_n(P) $ and show that $Phi_n$ is an epimorphism of algebras. We compute $Phi_n(P)$ for several families of symmetric polynomials $P$: symplectic and orthogonal Schur polynomials, elementary symmetric polynomials, complete homogeneous polynomials, and power sums. Some of these formulas were already found by Elouafi (2014) and Lachaud (2016). The polynomials of the form $Phi_n(operatorname{s}_{lambda/mu}^{(2n)})$, where $operatorname{s}_{lambda/mu}^{(2n)}$ is a skew Schur polynomial in $2n$ variables, arise naturally in the study of the minors of symmetric banded Toeplitz matrices, when the generating symbol is a palindromic Laurent polynomial, and its roots can be written as $x_1,ldots,x_n,x^{-1}_1,ldots,x^{-1}_n$. Trench (1987) and Elouafi (2014) found efficient formulas for the determinants of symmetric banded Toeplitz matrices. We show that these formulas are equivalent to the result of Ciucu and Krattenthaler (2009) about the factorization of the characters of classical groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا