ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Solution for the Ca II Triplet Puzzle : Results from Dwarf Elliptical Galaxies

47   0   0.0 ( 0 )
 نشر من قبل Dolf Michielsen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new estimates of ages and metallicities, based on FORS/VLT optical (4400-5500A) spectroscopy, of 16 dwarf elliptical galaxies (dEs) in the Fornax Cluster and in Southern Groups. These dEs are more metal-rich and younger than previous estimates based on narrow-band photometry and low-resolution spectroscopy. For our sample we find a mean metallicity [Z/H] = -0.33 dex and mean age 3.5 Gyr, consistent with similar samples of dEs in other environments (Local Group, Virgo). Three dEs in our sample show emission lines and very young ages. This suggests that some dEs formed stars until a very recent epoch and were self-enriched by a long star formation history. Previous observations of large near-infrared (~8500A) Ca II absorption strengths in these dEs are in good agreement with the new metallicity estimates, solving part of the so-called Calcium puzzle.

قيم البحث

اقرأ أيضاً

39 - D. Michielsen 2003
We present central CaT, PaT, and CaT* indices for a sample of fifteen dwarf elliptical galaxies (dEs). Twelve of these have CaT* ~ 7 A and extend the negative correlation between the CaT* index and central velocity dispersion sigma, which was derived for bright ellipticals (Es), down to 20 < sigma < 55 km/s. For five dEs we have independent age and metallicity estimates. Four of these have CaT* ~ 7 A, much higher than expected from their low metallicities (-1.5 < [Z/H] < -0.5). The observed anti-correlation of CaT* as a function of sigma or Z is in flagrant disagreement with theory. We discuss some of the amendments that have been proposed to bring the theoretical predictions into agreement with the observed CaT*-values of bright Es and how they can be extended to incorporate also the observed CaT*-values of dEs. Moreover, 3 dEs in our sample have CaT* ~ 5 A, as would be expected for metal-poor stellar systems. Any theory for dE evolution will have to be able to explain the co-existence of low-CaT* and high-CaT* dEs at a given mean metallicity. This could be the first direct evidence that the dE population is not homogeneous, and that different evolutionary paths led to morphologically and kinematically similar but chemically distinct objects.
The NIR Ca II triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf ga laxies and thereby an opportunity to constrain their chemical evolution processes. An interesting puzzle in this field is the significant lack of extremely metal-poor stars, below [Fe/H]=-3, found in classical dwarf galaxies around the Milky Way using this technique. The question arises whether these stars are really absent, or if the empirical Ca II triplet method used to study these systems is biased in the low-metallicity regime. Here we present results of synthetic spectral analysis of the Ca II triplet, that is focused on a better understanding of spectroscopic measurements of low-metallicity giant stars. Our results start to deviate strongly from the widely-used and linear empirical calibrations at [Fe/H]<-2. We provide a new calibration for Ca II triplet studies which is valid for -0.5<[Fe/H]<-4. We subsequently apply this new calibration to current data sets and suggest that the classical dwarf galaxies are not so devoid of extremely low-metallicity stars as was previously thought.
We present measurements of the near-infrared Calcium II triplet (CaT, CaT*), Paschen (PaT) and Magnesium (MgI) indices for a well-studied sample of 19 bulges of early to intermediate spiral galaxies. We find that both the CaT* and CaT indices decreas e with central velocity dispersion (sigma) with small scatter. This dependence is similar to that recently found by Cenarro (2002) for elliptical galaxies, implying an uniform CaT* -- sigma relation that applies to galaxies from ellipticals to intermediate-type spirals. The decrease of CaT and CaT* with sigma contrasts with the well-known increase of another alpha-element index, Mg_2, with sigma. We discuss the role of Ca underabundance ([Ca/Fe]<0) and IMF variations in the onset of the observed relations.
187 - L. van Zee , 2004
We present UBVRI surface photometry for 16 dwarf elliptical galaxies in the Virgo Cluster with previously measured kinematic properties. The global optical colors are red, with median values for the sample of 0.24 +/- 0.03 in (U-B), 0.77 +/- 0.02 in (B-V), and 1.02 +/- 0.03 in (V-I). We recover the well known color-magnitude relation for cluster galaxies, but find no significant difference in dominant stellar population between rotating and non-rotating dwarf elliptical galaxies; the average age of the dominant stellar population is 5-7 Gyr in all 16 galaxies in this sample. Analysis of optical spectra confirm these age estimates and indicate Fe and Mg abundances in the range of 1/20th to 1/3 of solar, as expected for low luminosity galaxies. Based on Lick indices and simple stellar population models, the derived [alpha/Fe] ratios are sub-solar to solar, indicating a more gradual chemical enrichment history for dEs as compared to giant elliptical galaxies in the Virgo Cluster. These observations confirm the marked difference in stellar population and stellar distribution between dwarf and giant elliptical galaxies and further substantiate the need for alternative evolutionary scenarios for the lowest mass cluster galaxies. We argue that it is likely that several different physical mechanisms played a significant role in the production of the Virgo cluster dE galaxies including in situ formation, infall of dEs that were once part of Local Group analogs, and transformation of dwarf irregular galaxies by the cluster environment. The observations support the hypothesis that a large fraction of the Virgo cluster dEs are formed by ram pressure stripping of gas from infalling dIs.
68 - B. Dias , M. C. Parisi 2020
(ABRIDGED) Context. The line strength of the Ca II triplet (CaT) lines are a proxy to measure metallicity from individual stellar spectra of bright red giant stars. It is a mandatory step to remove the magnitude (proxy for gravity, temperature and lu minosity) dependence from the equivalent width (EW) of the lines before converting them into metallicities. The working empirical procedure used for decades is to use the relative magnitude with respect to the horizontal branch level. Aims. The V filter is broadly adopted as the reference magnitude, although a few works have used different filters (I and Ks, for example). In this work we investigate the dependence of the CaT calibration using griz filters from the DECam and the GMOS, G from Gaia, BVI filters from the MCPS, YJKs filters from VIRCAM. We use as a reference FORS2 V filter used in the original analysis of the sample. Methods. Red giant stars from clusters with known metallicity and available CaT equivalent widths are used as reference. Public photometric catalogues are taken from SMASH DR2, VMC, Gaia, MCPS surveys plus VISCACHA-GMOS data, for a selection of Small Magellanic Cloud clusters. The slopes are fitted using two and three lines to be applicable to most of the metallicity scales. Results. The magnitude dependence of the CaT EWs is well described by a linear relation using any filter analysed in this work. The slope increases with wavelength of the filters. The zero point (a.k.a. reduced equivalent width), that is the metallicity indicator, remains the same. Conclusions. If the same line profile function is used with the same bandpasses and continuum regions, and the total EW comes from the same number of lines (2 or 3), then the reduced EW is the same regardless the filter used. Therefore, any filter can be used to convert the CaT equivalent widths into metallicity for a given CaT calibration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا