ترغب بنشر مسار تعليمي؟ اضغط هنا

Low noise cryogenic system for the measurement of Casimir energy in rigid cavities

47   0   0.0 ( 0 )
 نشر من قبل Enrico Calloni
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on preliminary results on the measurement of variations of the Casimir energy in rigid cavities through its influence on the superconducting transition of in-cavity aluminium (Al) thin films. After a description of the experimental apparatus we report on a measurement made with thermal photons, discussing its implications for the zero-point photons case. Finally we show the preliminary results for the zero-point case.

قيم البحث

اقرأ أيضاً

Recent advances in nanotechnology and atomic physics may allow for a demonstration of the dynamical Casimir effect. An array of film bulk acoustic resonators (FBARs) coherently driven at twice the resonant frequency of a high-quality electromagnetic cavity can generate a stationary state of Casimir photons. These are detected using an alkali atom beam prepared in an inverted population of hyperfine states, with an induced superradiant burst producing a detectable radio-frequency signal. We describe here the results of the simulations of the dynamics of superradiance and superfluorescence, with the aim to optimize the parameters for the detectability of Casimir photons. When the superradiant lifetime is shorter than the dissipation time, we find superradiant evolution to be similar in character but dramatically slower than in the usual lossy case.
89 - C. Romaniega 2020
We consider the interaction pressure acting on the surface of a dielectric sphere enclosed within a magnetodielectric cavity. We determine the sign of this quantity regardless of the geometry of the cavity for systems at thermal equilibrium, extendin g the Dzyaloshinskii-Lifshitz-Pitaevskii result for homogeneous slabs. As in previous theorems regarding Casimir-Lifshitz forces, the result is based on the scattering formalism. In this case the proof follows from the variable phase approach of electromagnetic scattering. With this, we present configurations in which both the interaction and the self-energy contribution to the pressure tend to expand the sphere.
60 - L. Rosa , S. Avino , E. Calloni 2017
In this paper we study the behavior of the Casimir energy of a multi-cavity across the transition from the metallic to the superconducting phase of the constituting plates. Our analysis is carried out in the framework of the ARCHIMEDES experiment, ai ming at measuring the interaction of the electromagnetic vacuum energy with a gravitational field. For this purpose it is foreseen to modulate the Casimir energy of a layered structure composing a multi-cavity coupled system by inducing a transition from the metallic to the superconducting phase. This implies a thorough study of the behavior of the cavity, where normal metallic layers are alternated with superconducting layers, across the transition. Our study finds that, because of the coupling between the cavities, mainly mediated by the transverse magnetic modes of the radiation field, the variation of energy across the transition can be very large.
The controversy concerning the temperature correction to the Casimir force has been ongoing for almost a decade with no view to a solution and has recently been extended to include semiconducting materials. We review some theoretical aspects of forma l violations of Nernsts heat theorem in the context of Casimir Lifshitz thermodynamics and the role of the exponent of the leading term of the dielectric permittivity with respect to imaginary frequency. A general formalism for calculating the temperature corrections to free energy at low temperatures is developed for systems which do not exhibit such anomalies, and the low temperature behaviour of the free energy in a gap between half-spaces of poorly conducting materials modelled with a Drude type permittivity is calculated.
The Casimir force and free energy at low temperatures has been the subject of focus for some time. We calculate the temperature correction to the Casimir-Lifshitz free energy between two parallel plates made of dielectric material possessing a consta nt conductivity at low temperatures, described through a Drude-type dielectric function. For the transverse magnetic (TM) mode such a calculation is new. A further calculation for the case of the TE mode is thereafter presented which extends and generalizes previous work for metals. A numerical study is undertaken to verify the correctness of the analytic results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا