ﻻ يوجد ملخص باللغة العربية
The Connes-Kreimer Hopf algebra of rooted trees, its dual, and the Foissy Hopf algebra of of planar rooted trees are related to each other and to the well-known Hopf algebras of symmetric and quasi-symmetric functions via a pair of commutative diagrams. We show how this point of view can simplify computations in the Connes-Kreimer Hopf algebra and its dual, particularly for combinatorial Dyson-Schwinger equations.
Recent work on perturbative quantum field theory has led to much study of the Connes-Kreimer Hopf algebra. Its (graded) dual, the Grossman-Larson Hopf algebra of rooted trees, had already been studied by algebraists. L. Foissy introduced a noncommuta
We introduce an affine Schur algebra via the affine Hecke algebra associated to Weyl group of affine type C. We establish multiplication formulas on the affine Hecke algebra and affine Schur algebra. Then we construct monomial bases and canonical bas
If H is a finite dimensional quasi-Hopf algebra and A is a left H-module algebra, we prove that there is a Morita context connecting the smash product A#H and the subalgebra of invariants A^{H}. We define also Galois extensions and prove the connection with this Morita context, as in the Hopf case.
The quiver Hopf algebras are classified by means of ramification systems with irreducible representations. This leads to the classification of Nichols algebras over group algebras and pointed Hopf algebras of type one.
Let $A$ be a connected graded $k$-algebra with a balanced dualizing complex. We prove that $A$ is a Koszul AS-regular algebra if and only if that the Castelnuovo-Mumford regularity and the Ext-regularity coincide for all finitely generated $A$-module