ترغب بنشر مسار تعليمي؟ اضغط هنا

Operational determination of multi-qubit entanglement classes via tuning of local operations

132   0   0.0 ( 0 )
 نشر من قبل Enrique Solano
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a physical setup with which it is possible to produce arbitrary symmetric long-lived multiqubit entangled states in the internal ground levels of photon emitters, including the paradigmatic GHZ and W states. In the case of three emitters, where each tripartite entangled state belongs to one of two well-defined entanglement classes, we prove a one-to-one correspondence between well-defined sets of experimental parameters, i.e., locally tunable polarizer orientations, and multiqubit entanglement classes inside the symmetric subspace.



قيم البحث

اقرأ أيضاً

We present experimental schemes that allow to study the entanglement classes of all symmetric states in multiqubit photonic systems. In addition to comparing the presented schemes in efficiency, we will highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.
We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system st ate by introducing the concept of hidden entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.
239 - Gus Gutoski 2009
Multi-party local quantum operations with shared quantum entanglement or shared classical randomness are studied. The following facts are established: (i) There is a ball of local operations with shared randomness lying within the space spanned by the no-signaling operations and centred at the completely noisy channel. (ii) The existence of the ball of local operations with shared randomness is employed to prove that the weak membership problem for local operations with shared entanglement is strongly NP-hard. (iii) Local operations with shared entanglement are characterized in terms of linear functionals that are ``completely positive on a certain cone K of separable Hermitian operators, under a natural notion of complete positivity appropriate to that cone. Local operations with shared randomness (but not entanglement) are also characterized in terms of linear functionals that are merely positive on that same cone K. (iv) Existing characterizations of no-signaling operations are generalized to the multi-party setting and recast in terms of the Choi-Jamiolkowski representation for quantum super-operators. It is noted that the standard nonlocal box is an example of a no-signaling operation that is separable, yet cannot be implemented by local operations with shared entanglement.
Entanglement plays a central role in the field of quantum information science. It is well known that the degree of entanglement cannot be increased under local operations. Here, we show that the concurrence of a bipartite entangled state can be incre ased under the local PT -symmetric operation. This violates the property of entanglement monotonicity. We also use the Bell-CHSH and steering inequalities to explore this phenomenon.
Employing the Pauli matrices, we have constructed a set of operators, which can be used to distinguish six inequivalent classes of entanglement under SLOCC (stochastic local operation and classical communication) for three-qubit pure states. These op erators have very simple structure and can be obtained from the Mermins operator with suitable choice of directions. Moreover these operators may be implemented in an experiment to distinguish the types of entanglement present in a state. We show that the measurement of only one operator is sufficient to distinguish GHZ class from rest of the classes. It is also shown that it is possible to detect and classify other classes by performing a small number of measurements. We also show how to construct such observables in any basis. We also consider a few mixed states to investigate the usefulness of our operators. Furthermore, we consider the teleportation scheme of Lee et al. (Phys. Rev. A 72, 024302 (2005)) and show that the partial tangles and hence teleportation fidelity can be measured. We have also shown that these partial tangles can also be used to classify genuinely entangled state, biseparable state and separable state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا