ﻻ يوجد ملخص باللغة العربية
Strong negative dependence properties have recently been proved for the symmetric exclusion process. In this paper, we apply these results to prove convergence to the Poisson and normal distributions for various functionals of the process.
We study mixing times of the symmetric and asymmetric simple exclusion process on the segment where particles are allowed to enter and exit at the endpoints. We consider different regimes depending on the entering and exiting rates as well as on the
We study the probability distribution of entanglement in the Quantum Symmetric Simple Exclusion Process, a model of fermions hopping with random Brownian amplitudes between neighboring sites. We consider a protocol where the system is initialized in
We obtain the exact large deviation functions of the density profile and of the current, in the non-equilibrium steady state of a one dimensional symmetric simple exclusion process coupled to boundary reservoirs with slow rates. Compared to earlier r
We consider the symmetric exclusion process on the $d$-dimensional lattice with translational invariant and ergodic initial data. It is then known that as $t$ diverges the distribution of the process at time $t$ converges to a Bernoulli product measu
We study the one-dimensional asymmetric simple exclusion process on the lattice ${1,dots,N}$ with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale $N^{-a}$ with $a>0$. We prove that at the