ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysics from data analysis of spherical gravitational wave detectors

105   0   0.0 ( 0 )
 نشر من قبل C\\'esar Henrique Lenzi CHL
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The direct detection of gravitational waves will provide valuable astrophysical information about many celestial objects. Also, it will be an important test to general relativity and other theories of gravitation. The gravitational wave detector SCHENBERG has recently undergone its first test run. It is expected to have its first scientific run soon. In this work the data analysis system of this spherical, resonant mass detector is tested through the simulation of the detection of gravitational waves generated during the inspiralling phase of a binary system. It is shown from the simulated data that it is not necessary to have all six transducers operational in order to determine the sources direction and the waves amplitudes.



قيم البحث

اقرأ أيضاً

This paper reviews gravitational wave sources and their detection. One of the most exciting potential sources of gravitational waves are coalescing binary black hole systems. They can occur on all mass scales and be formed in numerous ways, many of w hich are not understood. They are generally invisible in electromagnetic waves, and they provide opportunities for deep investigation of Einsteins general theory of relativity. Sect. 1 of this paper considers ways that binary black holes can be created in the universe, and includes the prediction that binary black hole coalescence events are likely to be the first gravitational wave sources to be detected. The next parts of this paper address the detection of chirp waveforms from coalescence events in noisy data. Such analysis is computationally intensive. Sect. 2 reviews a new and powerful method of signal detection based on the GPU-implemented summed parallel infinite impulse response filters. Such filters are intrinsically real time alorithms, that can be used to rapidly detect and localise signals. Sect. 3 of the paper reviews the use of GPU processors for rapid searching for gravitational wave bursts that can arise from black hole births and coalescences. In sect. 4 the use of GPU processors to enable fast efficient statistical significance testing of gravitational wave event candidates is reviewed. Sect. 5 of this paper addresses the method of multimessenger astronomy where the discovery of electromagnetic counterparts of gravitational wave events can be used to identify sources, understand their nature and obtain much greater science outcomes from each identified event.
Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave si gnals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.
120 - Neil J. Cornish 2020
Data from gravitational wave detectors are recorded as time series that include contributions from myriad noise sources in addition to any gravitational wave signals. When regularly sampled data are available, such as for ground based and future spac e based interferometers, analyses are typically performed in the frequency domain, where stationary (time invariant) noise processes can be modeled very efficiently. In reality, detector noise is not stationary due to a combination of short duration noise transients and longer duration drifts in the power spectrum. This non-stationarity produces correlations across samples at different frequencies, obviating the main advantage of a frequency domain analysis. Here an alternative time-frequency approach to gravitational wave data analysis is proposed that uses discrete, orthogonal wavelet wavepackets. The time domain data is mapped onto a uniform grid of time-frequency pixels. For locally stationary noise - that is, noise with an adiabatically varying spectrum - the time-frequency pixels are uncorrelated, which greatly simplifies the calculation of quantities such as the likelihood. Moreover, the gravitational wave signals from binary systems can be compactly represented as a collection of lines in time-frequency space, resulting in a computational cost for computing waveforms and likelihoods that scales as the square root of the number of time samples, as opposed to the linear scaling for time or frequency based analyses. Key to this approach is having fast methods for computing binary signals directly in the wavelet domain. Multiple fast transform methods are developed in detail.
123 - Salvatore Vitale 2020
Gravitational waves are ripples in spacetime generated by the acceleration of astrophysical objects. A direct consequence of general relativity, they were first directly observed in 2015 by the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) observatories. I review the first five years of gravitational wave detections. More than fifty gravitational waves events have been found, emitted by pairs of merging compact objects such as neutron stars and black holes. These signals yield insights into the formation of compact objects and their progenitor stars, enable stringent tests of general relativity and constrain the behavior of matter at densities higher than an atomic nucleus. Mergers that emit both gravitational and electromagnetic waves probe the formation of short gamma ray bursts, the nucleosynthesis of heavy elements, and measure the local expansion rate of the Universe.
Gravitational waves are radiative solutions of space-time dynamics predicted by Einsteins theory of General Relativity. A world-wide array of large-scale and highly sensitive interferometric detectors constantly scrutinizes the geometry of the local space-time with the hope to detect deviations that would signal an impinging gravitational wave from a remote astrophysical source. Finding the rare and weak signature of gravitational waves buried in non-stationary and non-Gaussian instrument noise is a particularly challenging problem. We will give an overview of the data-analysis techniques and associated observational results obtained so far by Virgo (in Europe) and LIGO (in the US), along with the prospects offered by the up-coming advance
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا