ترغب بنشر مسار تعليمي؟ اضغط هنا

Latitudinal variation of the solar photospheric intensity

103   0   0.0 ( 0 )
 نشر من قبل Ada Ortiz
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement $sim0.1 - 0.2%$ corresponding to a brightness temperature enhancement of $sim2.5{rm K}$). This appears to be thermal in origin and not due to a polar accumulation of weak magnetic elements, with both the continuum and CaIIK intensity distributions shifted towards higher values with little change in shape from their mid-latitude distributions. Since the enhancement is of low spatial frequency and of very small amplitude it is difficult to separate from systematic instrumental and processing errors. We provide a thorough discussion of these and conclude that the measurement captures real solar latitudinal intensity variations.



قيم البحث

اقرأ أيضاً

102 - A. Ortiz 2002
Sunspots, faculae and the magnetic network contribute to solar irradiance variations. The contribution due to faculae and the network is of basic importance, but suffers from considerable uncertainty. We determine the contrasts of active region facul ae and the network, both as a function of heliocentric angle and magnetogram signal. To achieve this, we analyze near-simultaneous full disk images of photospheric continuum intensity and line-of-sight magnetic field provided by the Michelson Doppler Interferometer (MDI) on board the SOHO spacecraft. Starting from the surface distribution of the solar magnetic field we first construct a mask, which is then used to determine the brightness of magnetic features, and the relatively field-free part of the photosphere separately. By sorting the magnetogram signal into different bins we are able to distinguish between the contrasts of different concentrations of magnetic field. We find that the contrasts of active region faculae (large magnetogram signal) and the network (small signal) exhibit a very different CLV, showing that the populations of magnetic flux tubes are different. This implies that these elements need to be treated separately when reconstructing variations of the total solar irradiance with high precision. We have obtained an analytical expression for the contrast of photospheric magnetic features as a function of both position on the disk and magnetic field strength, by performing a 2-dimensional fit to the observations.
We studied the radiative properties of small magnetic elements (active region faculae and the network) during the rising phase of solar cycle 23 from 1996 to 2001, determining their contrasts as a function of heliocentric angle, magnetogram signal, a nd the solar cycle phase. We combined near-simultaneous full disk images of the line-of-sight magnetic field and photospheric continuum intensity provided by the MDI instrument on board the SOHO spacecraft. Sorting the magnetogram signal into different ranges allowed us to distinguish between the contrast of different magnetic structures. We find that the contrast center-to-limb variation (CLV) of these small magnetic elements is independent of time with a 10% precision, when measured during the rising phase of solar cycle 23. A 2-dimensional empirical expression for the contrast of photospheric features as a function of both the position on the disk and the averaged magnetic field strength was determined, showing its validity through the studied time period. A study of the relationship between magnetogram signal and the peak contrasts shows that the intrinsic contrast (maximum contrast per unit of magnetic flux) of network flux tubes is higher than that of active region faculae during the solar cycle.
The modeling of the heliosphere requires continuous three-dimensional solar wind data. The in-situ out-of-ecliptic measurements are very rare, so that other methods of solar wind detection are needed. We use the remote-sensing data of the solar wind speed from observations of interplanetary scintillation (IPS) to reconstruct spatial and temporal structures of the solar wind proton speed from 1985 to 2013. We developed a method of filling the data gaps in the IPS observations to obtain continuous and homogeneous solar wind speed records. We also present a method to retrieve the solar wind density from the solar wind speed, utilizing the invariance of the solar wind dynamic pressure and energy flux with latitude. To construct the synoptic maps of the solar wind speed we use the decomposition into spherical harmonics of each of the Carrington rotation map. To fill the gaps in time we apply the singular spectrum analysis to the time series of the coefficients of spherical harmonics. We obtained helio-latitudinal profiles of the solar wind proton speed and density over almost three recent solar cycles. The accuracy in the reconstruction is, due to computational limitations, about 20%. The proposed methods allow us to improve the spatial and temporal resolution of the model of the solar wind parameters presented in our previous paper (Soko{l} et al. 2013) and give a better insight into the time variations of the solar wind structure. Additionally, the solar wind density is reconstructed more accurately and it fits better to the in-situ measurements from Ulysses.
130 - H. Korhonen 2011
In this work the latitude dependent stellar spot rotation is investigated based on dynamo models. The maps of the magnetic pressure at the surface from the dynamo calculations are treated similarly to the temperature maps obtained using Doppler imagi ng techniques. A series of snapshots from the dynamo models are cross-correlated to obtain the shift of the magnetic patterns at each latitude and time point. The surface differential rotation patterns obtained from the snapshots of the dynamo calculations show in all studied cases variability over the activity cycle. In the models using only the large scale dynamo field the measured rotation patterns are only at times similar to the input rotation law. This is due to the spot motion being mainly determined by the geometric properties of the large scale dynamo field. In the models with additional small scale magnetic field the surface differential rotation measured from the model follows well the input rotation law. The results imply that the stellar spots caused by the large scale dynamo field are not necessarily tracing the stellar differential rotation, whereas the spots formed from small scale fields trace well the surface flow patterns. It can be questioned whether the large spots observed in active stars could be caused by small scale fields. Therefore, it is not clear that the true stellar surface rotation can be recovered using measurements of large starspots, which are currently the only ones that can be observed.
Asteroseismology has undergone a profound transformation as a scientific field following the CoRoT and Kepler space missions. The latter is now yielding the first measurements of latitudinal differential rotation obtained directly from oscillation fr equencies. Differential rotation is a fundamental mechanism of the stellar dynamo effect. Our goal is to measure the amount of differential rotation in the solar analogues 16 Cyg A and B, which are the components of a binary system. These stars are the brightest observed by Kepler and have therefore been extensively observed, with exquisite precision on their oscillation frequencies. We modelled the acoustic power spectrum of 16 Cyg A and B using a model that takes into account the contribution of differential rotation to the rotational frequency splitting. The estimation was carried out in a Bayesian setting. We then inverted these results to obtain the rotation profile of both stars under the assumption of a solar-like functional form. We observe that the magnitude of latitudinal differential rotation has a strong chance of being solar-like for both stars, their rotation rates being higher at the equator than at the pole. The measured latitudinal differential rotation, defined as the difference of rotation rate between the equator and the pole, is $320pm269$ nHz and $440^{+363}_{-383}$ nHz for 16 Cyg A and B, respectively, confirming that the rotation rates of these stars are almost solar-like. Their equatorial rotation rates are $535pm75$ nHz and $565_{-129}^{+150}$ nHz. Our results are in good agreement with measurements obtained from spectropolarimetry, spectroscopy, and photometry. We present the first conclusive measurement of latitudinal differential rotation for solar analogues. Their rotational profiles are very close to those of the Sun. These results depend weakly on the uncertainties of the stellar parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا