ترغب بنشر مسار تعليمي؟ اضغط هنا

Zonotopes With Large 2D Cuts

98   0   0.0 ( 0 )
 نشر من قبل Nikolaus Witte Dr.
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There are d-dimensional zonotopes with n zones for which a 2-dimensional central section has Omega(n^{d-1}) vertices. For d=3 this was known, with examples provided by the Ukrainian easter eggs by Eppstein et al. Our result is asymptotically optimal for all fixed d>=2.

قيم البحث

اقرأ أيضاً

Given an action of a group $Gamma$ on a measure space $Omega$, we provide a sufficient criterion under which two sets $A, Bsubseteq Omega$ are measurably equidecomposable, i.e., $A$ can be partitioned into finitely many measurable pieces which can be rearranged using the elements of $Gamma$ to form a partition of $B$. In particular, we prove that every bounded measurable subset of $R^n$, $nge 3$, with non-empty interior is measurably equidecomposable to a ball via isometries. The analogous result also holds for some other spaces, such as the sphere or the hyperbolic space of dimension $nge 2$.
We study the problem of finding large cuts in $d$-regular triangle-free graphs. In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected size $(1/2 + 0.177/sqrt{d})m$, where $m$ is the number of edges. We give a simpler algorithm that does much better: it finds a cut of expected size $(1/2 + 0.28125/sqrt{d})m$. As a corollary, this shows that in any $d$-regular triangle-free graph there exists a cut of at least this size. Our algorithm can be interpreted as a very efficient randomised distributed algorithm: each node needs to produce only one random bit, and the algorithm runs in one synchronous communication round. This work is also a case study of applying computational techniques in the design of distributed algorithms: our algorithm was designed by a computer program that searched for optimal algorithms for small values of $d$.
131 - Sean Dewar , Anthony Nixon 2021
A bar-joint framework $(G,p)$ in a (non-Euclidean) real normed plane $X$ is the combination of a finite, simple graph $G$ and a placement $p$ of the vertices in $X$. A framework $(G,p)$ is globally rigid in $X$ if every other framework $(G,q)$ in $X$ with the same edge lengths as $(G,p)$ arises from an isometry of $X$. The weaker property of local rigidity in normed planes (where only $(G,q)$ within a neighbourhood of $(G,p)$ are considered) has been studied by several researchers over the last 5 years after being introduced by Kitson and Power for $ell_p$-norms. However global rigidity is an unexplored area for general normed spaces, despite being intensely studied in the Euclidean context by many groups over the last 40 years. In order to understand global rigidity in $X$, we introduce new generalised rigid body motions in normed planes where the norm is determined by an analytic function. This theory allows us to deduce several geometric and combinatorial results concerning the global rigidity of bar-joint frameworks in $X$.
180 - Michael Munn 2014
Let $(X,d)$ be an $n$-dimensional Alexandrov space whose Hausdorff measure $mathcal{H}^n$ satisfies a condition giving the metric measure space $(X,d,mathcal{H}^n)$ a notion of having nonnegative Ricci curvature. We examine the influence of large vol ume growth on these spaces and generalize some classical arguments from Riemannian geometry showing that when the volume growth is sufficiently large, then $(X,d,mathcal{H}^n)$ has finite topological type.
213 - Oleg Musin , Alexey Tarasov 2010
The thirteen spheres problem is asking if 13 equal size nonoverlapping spheres in three dimensions can touch another sphere of the same size. This problem was the subject of the famous discussion between Isaac Newton and David Gregory in 1694. The pr oblem was solved by Schutte and van der Waerden only in 1953. A natural extension of this problem is the strong thirteen spheres problem (or the Tammes problem for 13 points) which asks to find an arrangement and the maximum radius of 13 equal size nonoverlapping spheres touching the unit sphere. In the paper we give a solution of this long-standing open problem in geometry. Our computer-assisted proof is based on a enumeration of the so-called irreducible graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا