ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum stability of self-organized atomic insulator-like states in optical resonators

122   0   0.0 ( 0 )
 نشر من قبل Jonas Larson
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a paradigm example of cavity quantum electrodynamics with many body systems: an ultracold atomic gas inside a pumped optical resonator. In particular, we study the stability of atomic insulator-like states, confined by the mechanical potential emerging from the cavity field spatial mode structure. As in open space, when the optical potential is sufficiently deep, the atomic gas is in the Mott-like state. Inside the cavity, however, the potential depends on the atomic distribution, which determines the refractive index of the medium, thus altering the intracavity field amplitude. We derive the effective Bose-Hubbard model describing the physics of the system in one dimension and study the crossover between the superfluid -- Mott insulator quantum states. We determine the regions of parameters where the atomic insulator states are stable, and predict the existence of overlapping stability regions corresponding to competing insulator-like states. Bistable behavior, controlled by the pump intensity, is encountered in the vicinity of the shifted cavity resonance.



قيم البحث

اقرأ أيضاً

Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, can self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter in to the cavity mode, and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization, by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott-insulator or a superfluid, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the system is superfluid. These states could be realized in existing experimental setups.
We theoretically analyze superradiant emission of light from a cold atomic gas, when mechanical effects of photon-atom interactions are considered. The atoms are confined within a standing-wave resonator and an atomic metastable dipolar transition co uples to a cavity mode. The atomic dipole is incoherently pumped in the parameter regime that would correspond to stationary superradiance in absence of inhomogeneous broadening. Starting from the master equation for cavity field and atomic degrees of freedom we derive a mean-field model that allows us to determine a threshold temperature, above which thermal fluctuations suppress superradiant emission. We then analyze the dynamics of superradiant emission when the motion is described by a mean-field model. In the semiclassical regime and below the threshold temperature we observe that the emitted light can be either coherent or chaotic, depending on the incoherent pump rate. We then analyze superradiant emission from an ideal Bose gas at zero temperature when the superradiant decay rate $Lambda$ is of the order of the recoil frequency $omega_R$. We show that the quantized exchange of mechanical energy between the atoms and the field gives rise to a threshold, $Lambda_c$, below which superradiant emission is damped down to zero. When $Lambda>Lambda_c$ superradiant emission is accompanied by the formation of matter-wave gratings diffracting the emitted photons. The stability of these gratings depends on the incoherent pump rate $w$ with respect to a second threshold value $w_c$. For $w>w_c$ the gratings are stable and the system achieves stationary superradiance. Below this second threshold the coupled dynamics becomes chaotic. We characterize the dynamics across these two thresholds and show that the three phases we predict (incoherent, coherent, chaotic) can be revealed via the coherence properties of the light at the cavity output.
119 - B. Vaucher , A. Nunnenkamp , 2008
We investigate how to create entangled states of ultracold atoms trapped in optical lattices by dynamically manipulating the shape of the lattice potential. We consider an additional potential (the superlattice) that allows both the splitting of each site into a double well potential, and the control of the height of potential barrier between sites. We use superlattice manipulations to perform entangling operations between neighbouring qubits encoded on the Zeeman levels of the atoms without having to perform transfers between the different vibrational states of the atoms. We show how to use superlattices to engineer many-body entangled states resilient to collective dephasing noise. Also, we present a method to realize a 2D resource for measurement-based quantum computing via Bell-pair measurements. We analyze measurement networks that allow the execution of quantum algorithms while maintaining the resilience properties of the system throughout the computation.
Although most networks in nature exhibit complex topology the origins of such complexity remains unclear. We introduce a model of a growing network of interacting agents in which each new agents membership to the network is determined by the agents e ffect on the networks global stability. It is shown that out of this stability constraint, scale free networks emerges in a self organized manner, offering an explanation for the ubiquity of complex topological properties observed in biological networks.
In this work we investigate the electronic and optical properties of self-assembled InN/GaN quantum dots. The one-particle states of the low-dimensional heterostructures are provided by a tight-binding model that fully includes the wurtzite crystal s tructure on an atomistic level. Optical dipole and Coulomb matrix elements are calculated from these one-particle wave functions and serve as an input for full configuration interaction calculations. We present multi-exciton emission spectra and discuss in detail how Coulomb correlations and oscillator strengths are changed by the piezoelectric fields present in the structure. Vanishing exciton and biexciton ground state emission for small lens-shaped dots is predicted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا