ترغب بنشر مسار تعليمي؟ اضغط هنا

On two problems concerning topological centers

109   0   0.0 ( 0 )
 نشر من قبل Eli Glasner
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Eli Glasner




اسأل ChatGPT حول البحث

Let G be an infinite discrete group and bG its Cech-Stone compactification. Using the well known fact that a free ultrafilter on an infinite set is nonmeasurable, we show that for each element p of the remainder bG G, left multiplication L_p:bG to bG is not Borel measurable. Next assume that G is abelian. Let D subset ell^infty(G)$ denote the subalgebra of distal functions on G and let G^D denote the corresponding universal distal (right topological group) compactification of G. Our second result is that the topological center of G^D (i.e. the set of p in G^D for which L_p:G^D to G^D is a continuous map) is the same as the algebraic center and that for G=Z (the group of integers) this center coincides with the canonical image of G in G^D.

قيم البحث

اقرأ أيضاً

We consider the $k$-center problem in which the centers are constrained to lie on two lines. Given a set of $n$ weighted points in the plane, we want to locate up to $k$ centers on two parallel lines. We present an $O(nlog^2 n)$ time algorithm, which minimizes the weighted distance from any point to a center. We then consider the unweighted case, where the centers are constrained to be on two perpendicular lines. Our algorithms run in $O(nlog^2 n)$ time also in this case.
The k-means objective is arguably the most widely-used cost function for modeling clustering tasks in a metric space. In practice and historically, k-means is thought of in a continuous setting, namely where the centers can be located anywhere in the metric space. For example, the popular Lloyds heuristic locates a center at the mean of each cluster. Despite persistent efforts on understanding the approximability of k-means, and other classic clustering problems such as k-median and k-minsum, our knowledge of the hardness of approximation factors of these problems remains quite poor. In this paper, we significantly improve upon the hardness of approximation factors known in the literature for these objectives. We show that if the input lies in a general metric space, it is NP-hard to approximate: $bullet$ Continuous k-median to a factor of $2-o(1)$; this improves upon the previous inapproximability factor of 1.36 shown by Guha and Khuller (J. Algorithms 99). $bullet$ Continuous k-means to a factor of $4- o(1)$; this improves upon the previous inapproximability factor of 2.10 shown by Guha and Khuller (J. Algorithms 99). $bullet$ k-minsum to a factor of $1.415$; this improves upon the APX-hardness shown by Guruswami and Indyk (SODA 03). Our results shed new and perhaps counter-intuitive light on the differences between clustering problems in the continuous setting versus the discrete setting (where the candidate centers are given as part of the input).
77 - Shishuo Fu , Yaling Wang 2019
Let $r(n,k)$ (resp. $s(n,k)$) be the number of Schroder paths (resp. little Schroder paths) of length $2n$ with $k$ hills, and set $r(0,0)=s(0,0)=1$. We bijectively establish the following recurrence relations: begin{align*} r(n,0)&=sumlimits_{j=0}^{ n-1}2^{j}r(n-1,j), r(n,k)&=r(n-1,k-1)+sumlimits_{j=k}^{n-1}2^{j-k}r(n-1,j),quad 1le kle n, s(n,0) &=sumlimits_{j=1}^{n-1}2cdot3^{j-1}s(n-1,j), s(n,k) &=s(n-1,k-1)+sumlimits_{j=k+1}^{n-1}2cdot3^{j-k-1}s(n-1,j),quad 1le kle n. end{align*} The infinite lower triangular matrices $[r(n,k)]_{n,kge 0}$ and $[s(n,k)]_{n,kge 0}$, whose row sums produce the large and little Schroder numbers respectively, are two Riordan arrays of Bell type. Hence the above recurrences can also be deduced from their $A$- and $Z$-sequences characterizations. On the other hand, it is well-known that the large Schroder numbers also enumerate separable permutations. This propelled us to reveal the connection with a lesser-known permutation statistic, called initial ascending run, whose distribution on separable permutations is shown to be given by $[r(n,k)]_{n,kge 0}$ as well.
We construct, under the assumption that union of less than continuum many meager subsets of R is meager in R, an additive connectivity function f:R-->R with Cantor intermediate value property which is not almost continuous. This gives a partial answe r to a question of D. Banaszewski. We also show that every extendable function g:R-->R with a dense graph satisfies the following stronger version of the SCIVP property: for every a<b and every perfect set K between g(a) and g(b) there is a perfect subset C of (a,b) such that g[C] subset K and g|C is continuous strictly increasing. This property is used to construct a ZFC example of an additive almost continuous function f:R-->R which has the strong Cantor intermediate value property but is not extendable. This answers a question of H. Rosen. This also generalizes Rosens result that a similar (but not additive) function exists under the assumption of the continuum hypothesis.
The conservative sequence of a set $A$ under a transformation $T$ is the set of all $n in mathbb{Z}$ such that $T^n A cap A ot = varnothing$. By studying these sequences, we prove that given any countable collection of nonsingular transformations wi th no finite invariant measure ${T_i}$, there exists a rank-one transformation $S$ such that $T_i times S$ is not ergodic for all $i$. Moreover, $S$ can be chosen to be rigid or have infinite ergodic index. We establish similar results for $mathbb{Z}^d$ actions and flows. Then, we find sufficient conditions on rank-one transformations $T$ that guarantee the existence of a rank-one transformation $S$ such that $T times S$ is ergodic, or, alternatively, conditions that guarantee that $T times S$ is conservative but not ergodic. In particular, the infinite Chacon transformation satisfies both conditions. Finally, for a given ergodic transformation $T$, we study the Baire categories of the sets $E(T)$, $bar{E}C(T)$ and $bar{C}(T)$ of transformations $S$ such that $T times S$ is ergodic, ergodic but not conservative, and conservative, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا