ﻻ يوجد ملخص باللغة العربية
Hadron wave functions and form factors can be extracted using four-point correlators. Stochastic techniques are used to estimate the all to all propagators, which are required for the exact calculation of four-point functions. We apply the so called one-end trick to evaluate meson four-point functions. We demonstrate the effectiveness of the technique in the case of the pion and the $rho$-meson where we extract their charge distribution, as well as the form factors.
We present a calculation of the electromagnetic form factors of the $rho^+$ meson. Our formalism is based on the point-form of relativistic quantum mechanics. Electron-$rho$-meson scattering is formulated as a coupled-channel problem for a Bakamjian-
We present results for the nucleon electromagnetic and axial form factors using an N$_f$=2 twisted mass fermion ensemble with pion mass of about 131 MeV. We use multiple sink-source separations to identify excited state contamination. Dipole masses f
We present a calculation of pion electromagnetic and scalar form factors in two-flavor QCD with the non-perturbatively O(a)-improved Wilson fermion. Chiral extrapolation of the corresponding charge radius is discussed based on the chiral perturbation theory.
We investigate the excited states of the nucleon using $N_f=2$ twisted mass gauge configurations with pion masses in the range of about 270 MeV to 450 MeV and one ensemble of $N_f=2$ Clover fermions at almost physical pion mass. We use two different
Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small sp