ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Cosmic Evolution of Type Ia Supernovae

91   0   0.0 ( 0 )
 نشر من قبل Ryan J. Foley
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 UV spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with the same slit width, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be ~0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of ~3% in the optical and growing toward the UV. The difference between the maximum light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.

قيم البحث

اقرأ أيضاً

Astrophysical cosmology constrains the variation of Newtons Constant in a manner complementary to laboratory experiments, such as the celebrated lunar laser ranging campaign. Supernova cosmology is an example of the former and has attained campaign s tatus, following planning by a Dark Energy Task Force in 2005. In this paper we employ the full SNIa dataset to the end of 2013 to set a limit on G variation. In our approach we adopt the standard candle delineation of the redshift distance relation. We set an upper limit on its rate of change |G dot / G| of 0.1 parts per billion per year over 9 Gyrs. By contrast lunar laser ranging tests variation of G over the last few decades. Conversely, one may adopt the laboratory result as a prior and constrain the effect of variable G in dark energy equation of state experiments to delta w < 0.02. We also examine the parameterization G ~ 1 + z. Its short expansion age conflicts with the measured values of the expansion rate and the density in a flat Universe. In conclusion, supernova cosmology complements other experiments in limiting G variation. An important caveat is that it rests on the assumption that the same mass of 56Ni is burned to create the standard candle regardless of redshift. These two quantities, f and G, where f is the Chandrasekhar mass fraction burned, are degenerate. Constraining f variation alone requires more understanding of the SNIa mechanism.
The existing set of type Ia supernovae (SNe Ia) is now sufficient to detect oscillatory deviations from the canonical $Lambda$CDM cosmology. We determine that the Fourier spectrum of the Pantheon data set of spectroscopically well-observed SNe Ia is consistent with the predictions of $Lambda$CDM. We also develop and describe two complementary techniques for using SNe Ia to constrain those alternate cosmological models that predict deviations from $Lambda$CDM that are oscillatory in conformal time. The first technique uses the reduced $chi^2$ statistic to determine the likelihood that the observed data would result from a given model. The second technique uses bootstrap analysis to determine the likelihood that the Fourier spectrum of a proposed model could result from statistical fluctuations around $Lambda$CDM. We constrain three oscillatory alternate cosmological models: one in which the dark energy equation of state parameter oscillates around the canonical value of $w_{Lambda} = -1$, one in which the energy density of dark energy oscillates around its $Lambda$CDM value, and one in which gravity derives from a scalar field evolving under an oscillatory coupling. We further determine that any alternate cosmological model that produces distance modulus residuals with a Fourier amplitude of $simeq 36$ millimags is strongly ruled out, given the existing data, for frequencies between $simeq 0.08 textrm{Gyr}^ {-1} h_{100}$ and $simeq 80 textrm{Gyr}^ {-1} h_{100}$.
In this study we present constraints on the deceleration (q) and jerk (j) parameters using the late time integrated Sachs-Wolfe effect, type Ia supernovae, and H(z) data . We first directly measure the deceleration and jerk parameters using the cosmi c chronometers data with the Taylor series expression of H(z).However, due to the unusual variations in the deceleration parameter with slight changes in other parameters like snap (s) and lerk (l), we found that direct measurements using the series expression of the H(z) is not a suitable method for non-Lambda-CDM models and so we will need to derive the deceleration parameter after constraining density parameters and dark energy equation of state parameters. Then we present derived values of the deceleration parameter from Lambda CDM, WCDM and CPL models. We also discuss the transition redshift (zt) in relation with the deceleration parameter.
The physical structure of a nuclear flame is a basic ingredient of the theory of Type Ia supernovae (SNIa). Assuming an exponential density reduction with several characteristic times we have followed the evolution of a planar nuclear flame in an exp anding background from an initial density 6.6 10^7 g/cm3 down to 2 10^6 g/cm3. The total amount of synthesized intermediate-mass elements (IME), from silicon to calcium, was monitored during the calculation. We have made use of the computed mass fractions, X_IME, of these elements to give an estimation of the total amount of IME synthesized during the deflagration of a massive white dwarf. Using X_IME and adopting the usual hypothesis that turbulence decouples the effective burning velocity from the laminar flame speed, so that the relevant flame speed is actually the turbulent speed on the integral length-scale, we have built a simple geometrical approach to model the region where IME are thought to be produced. It turns out that a healthy production of IME involves the combination of not too short expansion times, t_c > 0.2 s, and high turbulent intensities. According to our results it could be difficult to produce much more than 0.2 solar masses of intermediate-mass elements within the deflagrative paradigma. The calculations also suggest that the mass of IME scales with the mass of Fe-peak elements, making it difficult to conciliate energetic explosions with low ejected nickel masses, as in the well observed SN1991bg or in SN1998de. Thus a large production of Si-peak elements, especially in combination with a low or a moderate production of iron, could be better addressed by either the delayed detonation route in standard Chandrasekhar-mass models or, perhaps, by the off-center helium detonation in the sub Chandrasekhar-mass scenario.
The standard model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present --- as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supern ovae so we can perform rigorous statistical tests to check whether these standardisable candles indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا