ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of shot noise in single-walled metallic carbon nanotubes weakly coupled to nonmagnetic and ferromagnetic leads

265   0   0.0 ( 0 )
 نشر من قبل Ireneusz Weymann
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present theoretical study of shot noise in single wall metallic carbon nanotubes weakly coupled to either nonmagnetic or ferromagnetic leads. Using the real-time diagrammatic technique, we calculate the current, Fano factor and tunnel magnetoresistance in the sequential tunneling regime. It is shown that the differential conductance displays characteristic four-fold periodicity, indicating single-electron charging. Such a periodicity is also visible in tunnel magnetoresistance of the system as well as in the Fano factor. The present studies elucidate the impact of ferromagnetic (vs. nonmagnetic) contacts on the transport characteristics under consideration.



قيم البحث

اقرأ أيضاً

We study the low frequency current correlations of an individual single-walled carbon nanotube at liquid He temperature. We have distinguished two physical regimes -- zero dimensional quantum dot and one dimensional quantum wire -- in terms of an ene rgy spacing from the finite tube length in both differential conductance and shot noise measurements. In a one dimensional wire regime, we observed a highly suppressed shot noise from all measured tube devices, suggesting that electron-electron interactions play an important role.
93 - Z. Yu , P.J. Burke 2005
The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to be equal to the dc conductance over the frequency range studied for tubes in both the ballistic and diffusive limit. This clearly demonstrates that nanotubes can carry high-frequency currents at least as well as dc currents over a wide range of operating conditions. Although a detailed theoretical explanation is still lacking, we present a phenomenological model of the ac impedance of a carbon nanotube in the presence of scattering that is consistent with these results.
178 - G. N. Ostojic , S. Zaric , J. Kono 2003
Wavelength-dependent pump-probe spectroscopy of micelle-suspended single-walled carbon nanotubes reveals two-component dynamics. The slow component (5-20 ps), which has not been observed previously, is resonantly enhanced whenever the pump photon ene rgy coincides with an absorption peak and we attribute it to interband carrier recombination, whereas we interpret the always-present fast component (0.3-1.2 ps) as intraband carrier relaxation in non-resonantly excited nanotubes. The slow component decreases drastically with decreasing pH (or increasing H$^+$ doping), especially in large-diameter tubes. This can be explained as a consequence of the disappearance of absorption peaks at high doping due to the entrance of the Fermi energy into the valence band, i.e., a 1-D manifestation of the Burstein-Moss effect.
We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs.
318 - J. Kono , G. N. Ostojic , S. Zaric 2003
We present results of wavelength-dependent ultrafast pump-probe experiments on micelle-suspended single-walled carbon nanotubes. The linear absorption and photoluminescence spectra of the samples show a number of chirality-dependent peaks, and conseq uently, the pump-probe results sensitively depend on the wavelength. In the wavelength range corresponding to the second van Hove singularities (VHSs), we observe sub-picosecond decays, as has been seen in previous pump-probe studies. We ascribe these ultrafast decays to intraband carrier relaxation. On the other hand, in the wavelength range corresponding to the first VHSs, we observe two distinct regimes in ultrafast carrier relaxation: fast (0.3-1.2 ps) and slow (5-20 ps). The slow component, which has not been observed previously, is resonantly enhanced whenever the pump photon energy resonates with an interband absorption peak, and we attribute it to radiative carrier recombination. Finally, the slow component is dependent on the pH of the solution, which suggests an important role played by H$^+$ ions surrounding the nanotubes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا