ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustic Probing of the Jamming Transition in an Unconsolidated Granular Medium

549   0   0.0 ( 0 )
 نشر من قبل Vincent Tournat
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xavier Jacob




اسأل ChatGPT حول البحث

Experiments with acoustic waves guided along the mechanically free surface of an unconsolidated granular packed structure provide information on the elasticity of granular media at very low pressures that are naturally controlled by the gravitational acceleration and the depth beneath the surface. Comparison of the determined dispersion relations for guided surface acoustic modes with a theoretical model reveals the dependencies of the elastic moduli of the granular medium on pressure. The experiments confirm recent theoretical predictions that relaxation of the disordered granular packing through non-affine motion leads to a peculiar scaling of shear rigidity with pressure near the jamming transition corresponding to zero pressure. Unexpectedly, and in disagreement with the most of the available theories, the bulk modulus depends on pressure in a very similar way to the shear modulus.



قيم البحث

اقرأ أيضاً

We demonstrate that a highly frustrated anisotropic Josephson junction array(JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings al ong the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i. e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress vs shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as an exotic fragile vortex matter : it behaves as superconductor (vortex glass) into one direction while normal conductor (vortex liquid) into the other direction even at zero temperature. Furthermore we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields - the rheology of soft materials and superconductivity.
172 - Takahiro Hatano 2008
Rheological properties of a dense granular material consisting of frictionless spheres are investigated. It is found that the shear stress, the pressure, and the kinetic temperature obey critical scaling near the jamming transition point, which is co nsidered as a critical point. These scaling laws have some peculiar properties in view of conventional critical phenomena because the exponents depend on the interparticle force models so that they are not universal. It is also found that these scaling laws imply the relation between the exponents that describe the growing correlation length.
We report on systematic measurements of the distribution of normal forces exerted by granular material under uniaxial compression onto the interior surfaces of a confining vessel. Our experiments on three-dimensional, random packings of monodisperse glass beads show that this distribution is nearly uniform for forces below the mean force and decays exponentially for forces greater than the mean. The shape of the distribution and the value of the exponential decay constant are unaffected by changes in the system preparation history or in the boundary conditions. An empirical functional form for the distribution is proposed that provides an excellent fit over the whole force range measured and is also consistent with recent computer simulation data.
225 - Vincent Tournat 2008
Experimental results and their interpretations are presented on the nonlinear acoustic effects of multiple scattered elastic waves in unconsolidated granular media. Short wave packets with a central frequency higher than the so-called cut-off frequen cy of the medium are emitted at one side of the statically stressed slab of glass beads and received at the other side after multiple scattering and nonlinear interactions. Typical signals are strongly distorted compared to their initially radiated shape both due to nonlinearity and scattering. It is shown that acoustic waves with a deformation amplitude much lower than the mean static deformation of the contacts in the medium can modify the elastic properties of the medium, especially for the weak contact skeleton part. This addresses the problem of reproducibility of granular structures during and after acoustic excitation, which is necessary to understand in the non destructive testing of the elastic properties of granular media by acoustic methods. Coda signal analysis is shown to be a powerful time-resolved tool to monitor slight modifications in the elastic response of an unconsolidated granular structure.
Granular packings display the remarkable phenomenon of dilatancy [1], wherein their volume increases upon shear deformation. Conventional wisdom and previous results suggest that dilatancy, as also the related phenomenon of shear-induced jamming, req uires frictional interactions [2, 3]. Here, we investigate the occurrence of dilatancy and shear jamming in frictionless packings. We show that the existence of isotropic jamming densities {phi}j above the minimal density, the J-point density {phi}J [4, 5], leads both to the emergence of shear-induced jamming and dilatancy. Packings at {phi}J form a significant threshold state into which systems evolve in the limit of vanishing pressure under constant pressure shear, irrespective of the initial jamming density {phi}j. While packings for different {phi}j display equivalent scaling properties under compression [6], they exhibit striking differences in rheological behaviour under shear. The yield stress under constant volume shear increases discontinuously with density when {phi}j > {phi}J, contrary to the continuous behavior in generic packings that jam at {phi}J [4, 7].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا