ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for NIR Molecular Hydrogen Emission in the CTTS LkHa 264 and the debris disk 49 Cet

35   0   0.0 ( 0 )
 نشر من قبل Carmona Andr\\'es
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Carmona




اسأل ChatGPT حول البحث

We report on the first results of a search for H2 emission from protoplanetary disks using CRIRES, ESOs new VLT high resolution NIR spectrograph. We observed the CTTS LkHa 264 and the debris disk 49 Cet, and searched for the 1-0 S(1), 1-0 S(0) and 2-1 S(1) H2 emission lines. The H2 line at 2.1218 micron is detected in LkHa 264. Our CRIRES spectra reveal the previously observed but not detected H2 line at 2.2233 micron in LkHa 264. An upper limit on the 2-1 S(1) H2 line flux in LkHalpha 264 is derived. These observations are the first simultaneous detection of 1-0 S(1) and 1-0 S(0) H2 emission from a protoplanetary disk. 49 Cet does not exhibit H2 emission in any of the three observed lines. There are a few lunar masses of optically thin hot H2 in the inner disk (~0.1 AU) of LkHa 264, and less than a tenth of a lunar mass of hot H2 in the inner disk of 49 Cet. The measured 1-0 S(0)/1-0 S(1) and 2-1 S(1)/1-0 S(1) line ratios in LkHa 264 indicate that the H2 emitting gas is at T<1500 K and that the H2 is most likely thermally excited by UV photons. Modeling of the shape of the line suggests that the disk should be seen close to face-on (i<35). A comparative analysis of the physical properties of CTTS in which the H2 1-0 S(1) line has been detected and non-detected indicates that the presence of H2 emission is correlated with the magnitude of the UV excess and the strength of the Halpha line. The lack of H2 emission in the NIR spectra of 49 Cet and the absence of Halpha emission suggest that the gas in the inner disk of 49 Cet has dissipated. The disk surrounding 49 Cet should have an inner hole.

قيم البحث

اقرأ أيضاً

309 - Jessica Klusmeyer 2021
Surprisingly strong CO emission has been observed from more than a dozen debris disks around nearby main-sequence stars. The origin of this CO is unclear, in particular whether it is left over from the protoplanetary disk phase or is second-generatio n material released from collisions between icy bodies like debris dust. The primary unexplored avenue for distinguishing the origin of the material is understanding its molecular composition. Here we present a deep search for five molecules (CN, HCN, HCO+, SiO, and CH3OH) in the debris disk around 49 Ceti. We take advantage of the high sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) at Band 7 to integrate for 3.2 hours at modest spatial (1) and spectral (0.8 km/s) resolution. Our search yields stringent upper limits on the flux of all surveyed molecular lines, which imply abundances relative to CO that are orders of magnitude lower than those observed in protoplanetary disks and Solar System comets, and also those predicted in outgassing models of second-generation material. However, if CI shielding is responsible for extending the lifetime of any CO produced in second-generation collisions, as proposed by Kral et al. (2018), then the line ratios do not reflect true ice phase chemical abundances, but rather imply that CO is shielded by its own photodissociation product, CI, but other molecules are rapidly photodissociated by the stellar and interstellar radiation field.
In a multi-wavelength study of thermal emission and scattered light images we analyse the dust properties and structure of the debris disc around the A1-type main sequence star 49~Cet. As a basis for this study, we present new scattered light images of the debris disc known to possess both a high amount of dust and gas. The outer region of the disc is revealed in former coronagraphic H-band and our new Y-band images from the Very Large Telescope SPHERE instrument. We use the knowledge of the discs radial extent inferred from ALMA observations and the grain size distribution found by SED fitting to generate semi-dynamical dust models of the disc. We compare the models to scattered light and thermal emission data and find that a disc with a maximum of the surface density at 110~au and shallow edges can describe both thermal emission and scattered light observations. This suggests that grains close to the blow-out limit and large grains stem from the same planetesimal population and are mainly influenced by radiation pressure. The influence of inwards transport processes could not be analysed in this study.
Previous observations revealed the existence of CO gas at nearly protoplanetary level in several dust-rich debris disks around young A-type stars. Here we used the ALMA 7m-array to measure $^{13}$CO and C$^{18}$O emission toward two debris disks, 49 Cet and HD 32297, and detected similarly high CO content ($>$0.01M$_oplus$). These high CO masses imply a highly efficient shielding of CO molecules against stellar and interstellar ultraviolet photons. Adapting a recent secondary gas disk model that considers both shielding by carbon atoms and self-shielding of CO, we can explain the observed CO level in both systems. Based on the derived gas densities we suggest that, in the HD 32297 disk, dust and gas are coupled and the dynamics of small grains is affected by the gaseous component. For 49 Cet, the question of coupling remains undecided. We found that the main stellar and disk propertiesof 49 Cet and HD 32297 are very similar to those of previously identified debris disks with high CO content. These objects constitute together the first known representatives of shielded debris disks.
We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary dis k. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the Gas in Protoplanetary Systems (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 mu m; 49 Cet is significantly extended in the 70 mu m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [OI] 63 mu m and [CII] 158 mu m. The CII line was detected at the 5sigma level - the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the OI line is the brightest one observed in Herschel protoplanetary disk spectra (Meeus et al. 2012; Dent et al. 2013). We present an estimate of the amount of circumstellar atomic gas implied by the CII emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.
160 - A. Carmona 2007
We observed the Herbig Ae/Be stars UX Ori, HD 34282, HD 100453, HD 101412, HD 104237 and HD 142666, and the T Tauri star HD 319139 and searched for H2 0-0 S(2) emission at 12.278 micron and H2 0-0 S(1) emission at 17.035 micron with VISIR, ESO-VLTs h igh-resolution MIR spectrograph. None of the sources present evidence for H2 emission. Stringent 3sigma upper limits to the integrated line fluxes and the mass of optically thin warm gas in the disks are derived. The disks contain less than a few tenths of Jupiter mass of optically thin H2 gas at 150 K at most, and less than a few Earth masses of optically thin H2 gas at 300 K and higher temperatures. We compare our results to a Chiang and Goldreich (1997, CG97) two-layer disk model. The upper limits to the disks optically thin warm gas mass are smaller than the amount of warm gas in the interior layer of the disk, but they are much larger than the amount of molecular gas in the surface layer. We present a calculation of the expected thermal H2 emission from optically thick disks, assuming a CG97 disk structure, a gas-to-dust ratio of 100 and Tgas = Tdust. The expected H2 thermal emission fluxes from typical disks around Herbig Ae/Be stars (10^-16 to 10^-17 erg/s/cm2 at 140 pc) are much lower than the detection limits of our observations (5*10^-15 erg/s/cm2). H2 emission levels are very sensitive to departures from the thermal coupling between the molecular gas and dust. Additional sources of heating of gas in the disks surface layer could have a major impact on the expected H2 disk emission. In the observed sources the molecular gas and dust in the surface layer have not significantly departed from thermal coupling (Tgas/Tdust< 2) and that the gas-to-dust ratio in the surface layer is very likely lower than 1000.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا