ترغب بنشر مسار تعليمي؟ اضغط هنا

First CNGS events detected by LVD

326   0   0.0 ( 0 )
 نشر من قبل Marco Selvi
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band $ u_{mu}$ beam at CERN and send it toward the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the $ u_{tau}$ appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of $7.6~10^{17}$ protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Montecarlo simulations.

قيم البحث

اقرأ أيضاً

The OPERA experiment, exposed to the CERN to Gran Sasso $ u_mu$ beam, collected data from 2008 to 2012. Four oscillated $ u_tau$ Charged Current interaction candidates have been detected in appearance mode, which are consistent with $ u_mu to u_tau$ oscillations at the atmospheric $Delta m^2$ within the standard three-neutrino framework. In this paper, the OPERA $ u_tau$ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.
The discoveries of high-energy astrophysical neutrinos by IceCube in 2013 and of gravitational waves by LIGO in 2015 have enabled a new era of multi-messenger astronomy. Gravitational waves can identify the merging of compact objects such as neutron stars and black holes. These compact mergers, especially neutron star mergers, are potential neutrino sources. We present an analysis searching for neutrinos from gravitational wave sources reported by the LIGO Virgo Collaboration (LVC). We use a dedicated transient likelihood analysis combining IceCube events with source localizations provided by LVC as spatial priors. We report results for all gravitational wave events from the O1, O2, and O3 observing runs.
The OPERA experiment is searching for nu_mu -> nu_tau oscillations in appearance mode i.e. via the direct detection of tau leptons in nu_tau charged current interactions. The evidence of nu_mu -> nu_tau appearance has been previously reported with th ree nu_tau candidate events using a sub-sample of data from the 2008-2012 runs. We report here a fourth nu_tau candidate event, with the tau decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analysed events and the low background, nu_mu -> nu_tau oscillations are established with a significance of 4.2sigma.
We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beamline at Fermilab. The MiniBooNE detector is located 745 m from the NuMI production target, at 110 mrad angle ($6.3^{circ}$) with respect to the NuMI beam axis. Samples of charged current quasi-elastic $ u_{mu}$ and $ u_e$ interactions are analyzed and found to be in agreement with expectation. This provides a direct verification of the expected pion and kaon contributions to the neutrino flux and validates the modeling of the NuMI off-axis beam.
The CERN-SPS accelerator has been briefly operated in a new, lower intensity neutrino mode with ~10^12 p.o.t. /pulse and with a beam structure made of four LHC-like extractions, each with a narrow width of 3 ns, separated by 524 ns. This very tightly bunched beam structure represents a substantial progress with respect to the ordinary operation of the CNGS beam, since it allows a very accurate time-of-flight measurement of neutrinos from CERN to LNGS on an event-to-event basis. The ICARUS T600 detector has collected 7 beam-associated events, consistent with the CNGS delivered neutrino flux of 2.2 10^16 p.o.t. and in agreement with the well known characteristics of neutrino events in the LAr-TPC. The time of flight difference between the speed of light and the arriving neutrino LAr-TPC events has been analysed. The result is compatible with the simultaneous arrival of all events with equal speed, the one of light. This is in a striking difference with the reported result of OPERA that claimed that high energy neutrinos from CERN should arrive at LNGS about 60 ns earlier than expected from luminal speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا