ﻻ يوجد ملخص باللغة العربية
After presenting three ways of defining a bulge component in disc galaxies, we introduce the various types of bulges, namely the classical bulges, the boxy/peanut bulges and the disc-like bulges. We then discuss three specific topics linked to bulge formation and evolution, namely the coupled time evolution of the bar, buckling and peanut strengths; the effect of velocity anisotropy on peanut formation; and bulge formation via bar destruction.
Bulges are of different types, morphologies and kinematics, from pseudo-bulges, close to disk properties (Sersic index, rotation fraction, flatenning), to classical de Vaucouleurs bulges, close to elliptical galaxies. Secular evolution and bar develo
A multi-faceted approach is described to constrain the importance of bar-driven evolution in disk galaxies, particularly bulge formation. N-body simulations are used to construct stellar kinematic bar diagnostics for edge-on systems and to quantify t
We present a new class of hydrodynamical models for the formation of bulges (either massive elliptical galaxies or classical bulges in spirals) in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. Our results hi
We use high resolution collisionless $N$-body simulations to study the secular evolution of disk galaxies and in particular the final properties of disks that suffer a bar and perhaps a bar-buckling instability. Although we find that bars are not des
Many galaxies at high redshift have peculiar morphologies dominated by 10^8-10^9 Mo kpc-sized clumps. Using numerical simulations, we show that these clump clusters can result from fragmentation in gravitationally unstable primordial disks. They appe