ﻻ يوجد ملخص باللغة العربية
We report on a detailed analysis of a SO(10) SUSY GUT model of Dermisek and Raby (DR) with a D3 family symmetry. The model is completely specified in terms of only 24 parameters and is able to successfully describe both quark and lepton masses and mixings, except for |Vub| that turns out to be too low. However, a global fit shows that flavor changing (FC) processes like Bs --> mu+ mu-, Bs-mixing, B+ --> tau+ nu, B --> Xs gamma and B --> Xs l+ l- pose a serious problem to the DR model. The simultaneous description of these FC processes forces squarks to have masses well above 1 TeV, not appealing on grounds of naturalness and probably beyond the reach of the LHC.
The clockwork mechanism, which can naturally explain the origin of small numbers, is implemented in $SO(10)$ grand unified theories to address the origin of hierarchies in fermion masses and mixings. We show that a minimal Yukawa sector involving a $
SO(10) GUT models with only small Higgs fields use higher-dimensional operators to generate realistic fermion mass matrices. In particular, a Higgs field in the spinor representation, 16^d_H, acquires a weak scale vev. We include the weak vev of the
Supersymmetric $SO(10)$ grand unified models with renormalizable Yukawa couplings involving only ${bf 10}$ and $overline{bf 126}$ Higgs fields have been shown to realize the fermion masses and mixings economically. In previous works, the sum rule of
In the SUSY SO(10) GUT context, we study the exclusive processes $B to K^{(*)} l^+l^-(l=mu,tau)$. Using the Wilson coefficients of relevant operators including the new operators $Q_{1,2}^{(prime)}$ which are induced by neutral Higgs boson (NHB) pengu
Processes involving flavor changing neutral currents (FCNC) provide excellent signatures with which to search for evidence of new physics. They have very small branching fractions in the Standard Model since they are highly suppressed by Glashow-Ilio