ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Hadron Scattering Using an Asymmetric Box

141   0   0.0 ( 0 )
 نشر من قبل Chuan Liu
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to study hadron-hadron scattering using lattice QCD in an asymmetric box which allows one to access more non-degenerate low-momentum modes for a given volume. The conventional L{u}schers formula applicable in a symmetric box is modified accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering phase shifts in the I=2, J=0 channel are calculated within quenched approximation using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric box. After the chiral and continuum extrapolation, we find that our quenched results for the scattering phase shifts in this channel are consistent with the experimental data when the three-momentum of the pion is below 300MeV. Agreement is also found when compared with previous theoretical results from lattice and other means. Moreover, with the usage of asymmetric volume, we are able to compute the scattering phases in the low-momentum range (pion three momentum less than about 350MeV in the center of mass frame) for over a dozen values of the pion three-momenta, much more than using the conventional symmetric box with comparable volume.

قيم البحث

اقرأ أيضاً

We calculate the light hadron spectrum in full QCD using two plus one flavor Asqtad sea quarks and domain wall valence quarks. Meson and baryon masses are calculated on a lattice of spatial size $L approx 2.5$texttt{fm}, and a lattice spacing of $a a pprox 0.124$texttt{fm}, for pion masses as light as $m_pi approx 300$texttt{MeV}, and compared with the results by the MILC collaboration with Asqtad valence quarks at the same lattice spacing. Two- and three-flavor chiral extrapolations of the baryon masses are performed using both continuum and mixed-action heavy baryon chiral perturbation theory. Both the three-flavor and two-flavor functional forms describe our lattice results, although the low-energy constants from the next-to-leading order SU(3) fits are inconsistent with their phenomenological values. Next-to-next-to-leading order SU(2) continuum formulae provide a good fit to the data and yield and extrapolated nucleon mass consistent with experiment, but the convergence pattern indicates that even our lightest pion mass may be at the upper end of the chiral regime. Surprisingly, our nucleon masses are essentially lineaer in $m_pi$ over our full range of pion masses, and we show this feature is common to all recent dynamical calculations of the nucleon mass. The origin of this linearity is not presently understood, and lighter pion masses and increased control of systematic errors will be needed to resolve this puzzling behavior.
We develop the formalism for the evaluation of density-density correlators in lattice QCD that includes techniques for the computation of the all-to-all propagators involved. A novel technique in this context is the implementation of the one-end tric k in the meson sector. Density-density correlators provide a gauge invariant definition for the hadron wave function and yield information on hadron deformation. We evaluate density-density correlators using two degenerate flavors of dynamical Wilson fermions for the pion, the rho-meson, the nucleon and the $Delta$. Using the one-end trick we obtain results that clearly show deformation of the rho-meson.
We study the scattering lengths of charmonia (J/psi and eta_c) with light hadrons (pi, rho and N) by the quenched lattice QCD simulations on 24x24x24x48, 32x32x32x48 and 48x48x48x48 lattices with the lattice spacing a = 0.068 fm. The scattering lengt h is extracted by using the Luschers phase-shift formula together with the measurement of the energy shift Delta E of two hadrons on the lattice. We find that there exist attractive interactions in all channels, J/psi(eta_c)-pi, J/psi(eta_c)-rho and J/psi(eta_c)-N: The s-wave J/psi-pi (eta_c-pi) scattering length is determined as 0.0119+-0.0039 fm (0.0113+-0.0035 fm) and the corresponding elastic cross section at the threshold becomes 0.018+0.013-0.010 mb (0.016+0.011-0.008 mb). Also, the J/psi-N (eta_c-N) spin-averaged scattering length is 0.71+-0.48 fm (0.70+-0.66 fm), which is at least an order of magnitude larger than the charmonium-pion scattering length. The volume dependence of the energy shifts is also investigated to check the expected 1/L^3 behavior of Delta E at a large spatial size L.
We present our exploratory study with the aim of simulating heavy-light semileptonic form factors as part of the RBC-UKQCD charm (to bottom) physics programme. We are using a distillation-based setup as a strategy to get optimised plateaus in semilep tonic $D_{(s)}$ and $B_{(s)}$ decays, and compare our results to form factors obtained from sequential $Z_2$-Wall propagators. The study is done in a centre-of-mass frame as well as in several moving frames. We use an $N_f=2+1$ domain wall fermion ensemble with a pion mass of $340$ MeV, with the aim of extending the study to a variety of other domain-wall ensembles, including physical-pion mass ensembles.
We present results for the $I=2$ $pipi$ scattering length using $N_f=2+1+1$ twisted mass lattice QCD for three values of the lattice spacing and a range of pion mass values. Due to the use of Laplacian Heaviside smearing our statistical errors are re duced compared to previous lattice studies. A detailed investigation of systematic effects such as discretisation effects, volume effects, and pollution of excited and thermal states is performed. After extrapolation to the physical point using chiral perturbation theory at NLO we obtain $M_pi a_0=-0.0442(2)_mathrm{stat}(^{+4}_{-0})_mathrm{sys}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا