ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Monte Carlo Study of a Dynamic Hubbard Model

250   0   0.0 ( 0 )
 نشر من قبل George Batrouni
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The `dynamic Hubbard Hamiltonian describes interacting fermions on a lattice whose on-site repulsion is modulated by a coupling to a fluctuating bosonic field. We investigate one such model, introduced by Hirsch, using the determinant Quantum Monte Carlo method. Our key result is that the extended s-wave pairing vertex, repulsive in the usual static Hubbard model, becomes attractive as the coupling to the fluctuating Bose field increases. The sign problem prevents us from exploring a low enough temperature to see if a superconducting transition occurs. We also observe a stabilization of antiferromagnetic correlations and the Mott gap near half-filling, and a near linear behavior of the energy as a function of particle density which indicates a tendency toward phase separation.

قيم البحث

اقرأ أيضاً

In contrast to bulk FeSe, which exhibits nematic order and low temperature superconductivity, atomic layers of FeSe reverse the situation, having high temperature superconductivity appearing alongside a suppression of nematic order. To investigate th is phenomenon, we study a minimal electronic model of FeSe, with interactions that enhance nematic fluctuations. This model is sign problem free, and is simulated using determinant quantum Monte Carlo (DQMC). We developed a DQMC algorithm with parallel tempering, which proves to be an efficient source of global updates and allows us to access the region of strong interactions. Over a wide range of intermediate couplings, we observe superconductivity with an extended s-wave order parameter, along with enhanced, but short ranged, $q=(0,0)$ ferro-orbital (nematic) order. These results are consistent with approximate weak coupling treatments that predict that nematic fluctuations lead to superconducting pairing. Surprisingly, in the parameter range under study, we do not observe nematic long range order. Instead, at stronger coupling an unusual insulating phase with $q=(pi,pi)$ antiferro-orbital order appears, which is missed by weak coupling approximations.
63 - Bin Xi , Fei Ye , Weiqiang Chen 2011
We present the global phase diagram of the extended boson Hubbard model on a simple cubic lattice by quantum Monte Carlo simulation with worm update algorithm. Four kinds of phases are supported by this model, including superfluid, supersolid, Mott, and charge density wave (CDW) states, which are identified in the phase diagram of chemical potential $mu$ versus nearest neighbor interaction V . By changing the chemical potential, a continuous transition is found from the Mott phase to a superfluid phase without breaking the translational symmetry. For an insulating CDW state, adding particles to it gives rise to a continuous transition to a supersolid phase, while removing particles usually leads to a first-order one to either supersolid or superfluid phase. By tuning the nearest neighbor interaction, one can realize the transition between two insulating phases, Mott and CDW with the same particle density, which turns out to be of the first-order. We also demonstrate that a supersolid phase with average particle density less than 1/2 can exist in a small region of $mu$ - V phase diagram.
We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of a one dimensional Rabi-Hubbard model. The model consists of a lattice of Rabi systems coupled by a photon hopping term between near neighbor sites. For large enough coupling between photons and atoms, the phase diagram generally consists of only two phases: a coherent phase and a compressible incoherent one separated by a quantum phase transition (QPT). We show that, as one goes deeper in the coherent phase, the system becomes unstable exhibiting a divergence of the number of photons. The Mott phases which are present in the Jaynes-Cummings-Hubbard model are not observed in these cases due to the presence of non-negligible counter-rotating terms. We show that these two models become equivalent only when the detuning is negative and large enough, or if the counter-rotating terms are small enough.
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-inte racting limit is significantly broadened by the electronic correlations, but retains signatures of the approach to the edges of the first Brillouin zone as the density increases. Finite size scaling of simulations on large lattices allows us to extract the interaction dependence of the antiferromagnetic order parameter, exhibiting its evolution from weak coupling to the strong coupling Heisenberg limit. Our lattices provide improved resolution of the Greens function in momentum space, allowing a more quantitative comparison with time-of-flight optical lattice experiments.
Fixed-node Greens function Monte Carlo calculations have been performed for very large 16x6 2D Hubbard lattices, large interaction strengths U=10,20, and 40, and many (15-20) densities between empty and half filling. The nodes were fixed by a simple Slater-Gutzwiller trial wavefunction. For each value of U we obtained a sequence of ground-state energies which is consistent with the possibility of a phase separation close to half-filling, with a hole density in the hole-rich phase which is a decreasing function of U. The energies suffer, however, from a fixed-node bias: more accurate nodes are needed to confirm this picture. Our extensive numerical results and their test against size, shell, shape and boundary condition effects also suggest that phase separation is quite a delicate issue, on which simulations based on smaller lattices than considered here are unlikely to give reliable predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا